AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy

Da Zhao1,2,§Hengyu Li2,3,§Jianlong Wang2,3Qi Gao2,3Yang Yu2,3Jianming Wen4( )Zhong Lin Wang2,5( )Tinghai Cheng1,2,3( )
School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
College of Engineering, Zhejiang Normal University, Jinhua 321004, China
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Da Zhao and Hengyu Li contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, a drawstring triboelectric nanogenerator with modular electrodes (DS-TENG) is proposed to improve its adaptability for the water wave environment. The large motion displacement of 150 mm is realized by the flexible drawstring system. In addition, the durability and replaceability of the power generation units are enhanced by the modular electrodes. This paper will provide reference for the design of TENG that adapts to a wide range of wave heights.

Abstract

The development and utilization of marine blue energy has become the focus of current research. A drawstring triboelectric nanogenerator with modular electrodes (DS-TENG) is proposed to harvest wave energy. Motion displacement and water wave adaptability are improved by using the drawstring structure in the DS-TENG. Furthermore, the modular electrode design is applied to improve the durability and replaceability of the generation units. The rationality of the structure is verified by theoretical analysis, and performance experiments on the fundamental output, displacement and frequency, durability and application are carried out. The DS-TENG can achieve output performance of 98.03 nC, 3.63 μA, 238.50 V and 923.92 µW at 150 mm and 1.0 Hz. In addition, the performance drops by 6.11% after 110,000 cycles for DS-TENG durability. This paper will provide reference for the design of TENG that adapts to a wide range of wave heights.

Electronic Supplementary Material

Video
12274_2023_5796_MOESM1_ESM.mp4
12274_2023_5796_MOESM2_ESM.mp4
12274_2023_5796_MOESM3_ESM.mp4
Download File(s)
12274_2023_5796_MOESM4_ESM.pdf (2.5 MB)

References

[1]

Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

[2]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[3]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[4]

Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

[5]

Zhao, J. Q.; Zhen, G. W.; Liu, G. X.; Bu, T. Z.; Liu, W. B.; Fu, X. P.; Zhang, P.; Zhang, C.; Wang, Z. L. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 2019, 61, 111–118.

[6]

Ye, C. Y.; Dong, K.; An, J.; Yi, J.; Peng, X.; Ning, C.; Wang, Z. L. A Triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Lett. 2021, 6, 1443–1452.

[7]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[8]
Jing, Z. X.; Zhang, J. C.; Wang, J. L.; Zhu, M. K.; Wang, X. X.; Cheng, T. H.; Zhu, J. Y.; Wang, Z. L. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Res. 2022, 15, 5098–5104.
[9]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[10]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[11]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

[12]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[13]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[14]

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[15]

Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

[16]

Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

[17]

Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

[18]

Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric–electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

[19]

Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

[20]

Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.

[21]

Li, Y. H.; Guo, Z. T.; Zhao, Z. H.; Gao, Y. K.; Yang, P. Y.; Qiao, W. Y.; Zhou, L. L.; Wang, J.; Wang, Z. L. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 2023, 336, 120792.

[22]

Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.

[23]

Chen, B. D.; Tang, W.; He, C.; Deng, C. R.; Yang, L. J.; Zhu, L. P.; Chen, J.; Shao, J. J.; Liu, L.; Wang, Z. L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97.

[24]

Yuan, Z. Q.; Wang, C. F.; Xi, J. G.; Han, X.; Li, J.; Han, S. T.; Gao, W. C.; Pan, C. F. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 2021, 6, 2809–2816.

[25]

Wang, Y.; Liu, X. Y.; Wang, Y. W.; Wang, H.; Wang, H.; Zhang, S. L.; Zhao, T. C.; Xu, M. Y.; Wang, Z. L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 2021, 15, 15700–15709.

[26]

Wu, Y.; Zeng, Q. X.; Tang, Q.; Liu, W. L.; Liu, G. L.; Zhang, Y.; Wu, J.; Hu, C. G.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205.

[27]

Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

[28]

Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

[29]

Qu, Z. G.; Huang, M. K.; Chen, C. X.; An, Y.; Liu, H. Z.; Zhang, Q. P.; Wang, X. P.; Liu, Y.; Yin, W. L.; Li, X. F. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2202048.

[30]

Liu, L.; Shi, Q. F.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052.

[31]

Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.

[32]

Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

[33]

Rui, P. S.; Zhang, W.; Zhong, Y. M.; Wei, X. X.; Guo, Y. C.; Shi, S. W.; Liao, Y. L.; Cheng, J.; Wang, P. H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 2020, 74, 104937.

[34]

Zhao, B.; Li, Z. H.; Liao, X. Q.; Qiao, L. F.; Li, Y. R.; Dong, S. L.; Zhang, Z. N.; Zhang, B. C. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 2021, 89, 106381.

[35]

Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

[36]

Qian, P.; Feng, B.; Wen, H. S.; Jiang, X.; Ying, Y.; Si, Y. L.; Zhang, D. H. Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy 2022, 98, 107249.

[37]

Li, J. P.; Hu, Y. L.; Wang, X. N.; He, L. D.; Ma, J. J.; Wan, N.; Wen, J. M.; Cheng, T. H. A bow-drill structured triboelectric nanogenerator for marine ranching monitoring. Adv. Mater. Technol. 2023, 8, 2201471.

[38]

Zhao, D.; Yu, X.; Wang, J. L.; Gao, Q.; Wang, Z. J.; Cheng, T. H.; Wang, Z. L. A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 2022, 15, 3901–3911.

[39]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[40]

Zhao, D.; Yu, X.; Wang, Z. J.; Wang, J. L.; Li, X.; Wang, Z. L.; Cheng, T. H. Universal equivalent circuit model and verification of current source for triboelectric nanogenerator. Nano Energy 2021, 89, 106335.

Nano Research
Pages 10931-10937
Cite this article:
Zhao D, Li H, Wang J, et al. A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy. Nano Research, 2023, 16(8): 10931-10937. https://doi.org/10.1007/s12274-023-5796-6
Topics:

807

Views

7

Crossref

4

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 24 March 2023
Revised: 22 April 2023
Accepted: 02 May 2023
Published: 19 June 2023
© Tsinghua University Press 2023
Return