AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property

Zhehua Zhang1,2,§Teng Zhou3,§Xiang-Yu Kong1,4Yadong Wu1,2Weiwen Xin1,2Yanglansen Cui1Linsen Yang1Tingyang Li1,2Xin Li1,2Qingchen Wang1,2Weipeng Chen1( )Lei Jiang1,2Liping Wen1,2,4( )
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PChina
College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
Binzhou Institute of Technology, Binzhou 256600, China

§ Zhehua Zhang and Teng Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Benefiting from the space-charged and three-dimensional (3D) interconnected nanochannels of self-crosslinking hydrogel membrane, the concentration polarization is effectively reduced in the presence of temperature difference. The output power density of hydrogel-based salinity gradient energy conversion system was 11.53 W·m−2 by coupling a 40 K temperature difference, which was increased by 193%.

Abstract

Coupling low-grade heat (LGH) with salinity gradient is an effective approach to increase the efficiency of the nanofluidic-membrane-based power generator. However, it is a challenge to fabricate membranes with high charge density that ensures ion permselectivity, while maintaining chemical and mechanical stability in this composite environment. Here, we develop a bis[2-(methacryloyloxy)ethyl] phosphate (BMAP) hydrogel membrane with good thermal stability and anti-swelling property through self-crosslinking of the selected monomer. By taking advantage of negative space charge and three-dimensional (3D) interconnected nanochannels, salinity gradient energy conversion efficiency is substantially enhanced by temperature difference. Theoretical and experimental results verify that LGH can largely weaken the concentration polarization, promoting transmembrane ion transport. As a result, such a hydrogel membrane delivers high-performance energy conversion with a power density of 11.53 W·m−2 under a negative temperature difference (NTD), showing a 193% increase compared with that without NTD.

Electronic Supplementary Material

Download File(s)
12274_2023_5794_MOESM1_ESM.pdf (3.3 MB)

References

[1]

Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N. Climate-society feedbacks and the avoidance of dangerous climate change. Nat. Climate Change 2012, 2, 668–671.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[4]

Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

[5]

Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660.

[6]

Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

[7]

Hao, J. R.; Bao, B.; Zhou, J. J.; Cui, Y. S.; Chen, X. C.; Zhou, J. L.; Zhou, Y. H.; Jiang, L. A euryhaline-fish-inspired salinity self-adaptive nanofluidic diode leads to high-performance blue energy harvesters. Adv. Mater. 2022, 34, 2203109.

[8]

Zhang, Z.; Bhauriyal, P.; Sahabudeen, H.; Wang, Z. Y.; Liu, X. H.; Hambsch, M.; Mannsfeld, S. C. B.; Dong, R. H.; Heine, T.; Feng, X. L. Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion. Nat. Commun. 2022, 13, 3935.

[9]

Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J. M.; Razal, J. M.; Kotov, N. A.; Lei, W. W. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 2020, 4, 247–261.

[10]

Man, Z. M.; Safaei, J.; Zhang, Z.; Wang, Y. Z.; Zhou, D.; Li, P.; Zhang, X. G.; Jiang, L.; Wang, G. X. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 2021, 143, 16206–16216.

[11]

Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem., Int. Ed. 2021, 60, 20294–20300.

[12]

Zhou, S. Y.; Hu, Y. H.; Xin, W. W.; Fu, L.; Lin, X. B.; Yang, L. S.; Hou, S. H.; Kong, X. Y.; Jiang, L.; Wen, L. P. Surfactant-assisted sulfonated covalent organic nanosheets: Extrinsic charge for improved ion transport and salinity-gradient energy harvesting. Adv. Mater. 2023, 35, 2208640.

[13]

Gray, G. T.; McCutcheon, J. R.; Elimelech, M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006, 197, 1–8.

[14]

Cao, L. X.; Xiao, F. L.; Feng, Y. P.; Zhu, W. W.; Geng, W. X.; Yang, J. L.; Zhang, X. P.; Li, N.; Guo, W.; Jiang, L. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 2017, 27, 1604302.

[15]

Lin, T. W.; Hsu, J. P. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. J. Colloid Interface Sci. 2020, 564, 491–498.

[16]

Zhu, C. J.; Zuo, X. H.; Xian, W. P.; Guo, Q.; Meng, Q. W.; Wang, S.; Ma, S. Q.; Sun, Q. Integration of thermoelectric conversion with reverse electrodialysis for mitigating ion concentration polarization and achieving enhanced output power density. ACS Energy Lett. 2022, 7, 2937–2943.

[17]

de Kok, J. M.; de Valk, C.; van Kester, J. H. T. M.; de Goede, E.; Uittenbogaard, R. E. Salinity and temperature stratification in the Rhine Plume. Estuar. Coast. Shelf Sci. 2001, 53, 467–475.

[18]

Gingerich, D. B.; Mauter, M. S. Quantity, quality, and availability of waste heat from united states thermal power generation. Environ. Sci. Technol. 2015, 49, 8297–8306.

[19]

Lindley, D. The energy should always work twice. Nature 2009, 458, 138–141.

[20]

Bao, B.; Hao, J. R.; Bian, X. J.; Zhu, X. B.; Xiao, K.; Liao, J. W.; Zhou, J. J.; Zhou, Y. Z.; Jiang, L. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv. Mater. 2017, 29, 1702926.

[21]

Zhao, Y. M.; Yan, Y. G.; Cui, X.; Wu, X. W.; Wang, H.; Huang, J.; Qiu, X. Y. A conductive, self-healing hybrid hydrogel with excellent water-retention and thermal stability by introducing ethylene glycol as a crystallization inhibitor. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125443.

[22]

Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

[23]

Lei, W. W.; Qi, S. H.; Rong, Q. F.; Huang, J.; Xu, Y. C.; Fang, R. C.; Liu, K. S.; Jiang, L.; Liu, M. J. Diffusion-freezing-induced microphase separation for constructing large-area multiscale structures on hydrogel surfaces. Adv. Mater. 2019, 31, 1808217.

[24]

Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.

[25]

Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

[26]

Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466–2477.

[27]

Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9, 1215–1224.

[28]

Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123–10126.

[29]

Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

[30]

Rollings, R. C.; Kuan, A. T.; Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 2016, 7, 11408.

[31]

Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem., Int. Ed. 2020, 59, 8720–8726.

[32]

Vermaas, D. A.; Veerman, J.; Saakes, M.; Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci. 2014, 7, 1434–1445.

[33]

Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

[34]

Xin, W. W.; Xiao, H. Y.; Kong, X. Y.; Chen, J. J.; Yang, L. S.; Niu, B.; Qian, Y. C.; Teng, Y. F.; Jiang, L.; Wen, L. P. Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting. ACS Nano 2020, 14, 9701–9710.

[35]

Xin, W. W.; Zhang, Z.; Huang, X. D.; Hu, Y. H.; Zhou, T.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876.

[36]

Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265–12272.

[37]

Zhou, S.; Xie, L.; Zhang, L. P.; Wen, L. P.; Tang, J. Y.; Zeng, J.; Liu, T. Y.; Peng, D. N.; Yan, M.; Qiu, B. L. et al. Interfacial super-assembly of ordered mesoporous silica-alumina heterostructure membranes with pH-sensitive properties for osmotic energy harvesting. ACS Appl. Mater. Interfaces 2021, 13, 8782–8793.

[38]

Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914.

[39]

Huang, X. D.; Zhang, Z.; Kong, X. Y.; Sun, Y.; Zhu, C. C.; Liu, P.; Pang, J. H.; Jiang, L.; Wen, L. P. Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354–362.

[40]

Zhu, X. B.; Hao, J. R.; Bao, B.; Zhou, Y. H.; Zhang, H. B.; Pang, J. H.; Jiang, Z. H.; Jiang, L. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 2018, 4, eaau1665.

[41]

Liu, Y. C.; Yeh, L. H.; Zheng, M. J.; Wu, K. C. W. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 2021, 7, eabe9924.

[42]

Li, R. R.; Jiang, J. Q.; Liu, Q. Q.; Xie, Z. Q.; Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643–649.

[43]

Chen, W. P.; Zhang, Q. R.; Qian, Y. C.; Xin, W. W.; Hao, D. Z.; Zhao, X. L.; Zhu, C. C.; Kong, X. Y.; Lu, B. Z.; Jiang, L. et al. Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Cent. Sci. 2020, 6, 2097–2104.

[44]

Chen, W. P.; Wang, Q.; Chen, J. J.; Zhang, Q. R.; Zhao, X. L.; Qian, Y. C.; Zhu, C. C.; Yang, L. S.; Zhao, Y. Y.; Kong, X. Y. et al. Improved ion transport and high energy conversion through hydrogel membrane with 3D interconnected nanopores. Nano Lett. 2020, 20, 5705–5713.

[45]

Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

[46]

Zhang, W. Y.; Yan, H. L.; Wang, Q. W.; Zhao, C. L. An extended Teorell–Meyer–Sievers theory for membrane potential under non-isothermal conditions. J. Membr. Sci. 2022, 643, 120073.

[47]

Long, R.; Kuang, Z. F.; Liu, Z. C.; Liu, W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl. Sci. Rev. 2019, 6, 1266–1273.

[48]

Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P. Salinity gradient power: Influences of temperature and nanopore size. Nanoscale 2016, 8, 2350–2357.

[49]

Mai, V. P.; Huang, W. H.; Yang, R. J. Enhancing ion transport through nanopores in membranes for salinity gradient power generation. ACS EST Eng. 2021, 1, 1725–1752.

[50]

Chen, K. X.; Yao, L. N.; Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 2019, 141, 8608–8615.

[51]

Zhang, P. C.; Chen, S. F.; Zhu, C. J.; Hou, L. X.; Xian, W. P.; Zuo, X. H.; Zhang, Q. H.; Zhang, L.; Ma, S. Q.; Sun, Q. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nat. Commun. 2021, 12, 1844.

[52]

Wu, Y. D.; Zhou, T.; Wang, Y.; Qian, Y. X.; Chen, W. P.; Zhu, C. C.; Niu, B.; Kong, X. Y.; Zhao, Y. F.; Lin, X. B. et al. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy 2022, 92, 106709.

[53]

Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis. Nanoscale 2017, 9, 12068–12076.

[54]

Mai, V. P.; Yang, R. J. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Appl. Energy 2020, 274, 115294.

[55]

Zhu, H. Y.; Qu, Z. G.; Wang, Q.; Zhang, J. F. Dimension unification and dominance evaluation of multi-physical parameters for nanochannel-based ionic thermoelectric energy conversion using similarity principle. Energy Convers. Manage., 2023, 276, 116589.

[56]

Ren, Q. L.; Chen, K. L.; Zhu, H. Y.; Zhang, J. F.; Qu, Z. G. Nanoparticle enhanced salinity-gradient osmotic energy conversion under photothermal effect. Energy Convers. Manage., 2022, 251, 115032.

Nano Research
Pages 11288-11295
Cite this article:
Zhang Z, Zhou T, Kong X-Y, et al. Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property. Nano Research, 2023, 16(8): 11288-11295. https://doi.org/10.1007/s12274-023-5794-8
Topics:

635

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 22 March 2023
Revised: 28 April 2023
Accepted: 01 May 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return