AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Towards reliable assessment of hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells

Fei-Yue Gao,§Ye-Hua Wang,§Yu YangJie LiaoJing-Wen DuanMuXiao-Long ZhangZhuang-Zhuang NiuPeng-Peng YangMin-Rui Gao( )
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

§ Fei-Yue Gao and Ye-Hua Wang contributed equally to this work.

Show Author Information

Graphical Abstract

For the analytical uncertainties in the literature concerning the assessment of the hydrogen oxidation reaction (HOR) catalyst activity, we determine the origin of false HOR currents and propose a rigorous approach to eliminate them. We unveil experimentally the uncertainties of obtaining exchange current densities (j0) and propose some more accurate dynamic analysis methods.

Abstract

Recent advancement of proton exchange membrane fuel cells has led to commercial sales of fuel-cell cars but market barrier exists because this technology heavily relies on platinum catalyst. Given the permission of adopting platinum-group-metal-free catalysts, anion-exchange membrane fuel cell has received notable attention. However, the sluggish kinetics of anodic hydrogen oxidation reaction (HOR) largely limit the cell efficiency. Although many high-performance HOR catalysts have been reported, there are analytical uncertainties in the literature concerning the assessment of the catalyst activity. Here we determine the origin of false HOR currents in the recorded polarization curves and propose a rigorous approach to eliminate them. We unveil experimentally the uncertainties of obtaining exchange current densities (j0) using Tafel plot from Bulter–Volmer equation and recommend employing the micro-polarization region method. For bulky catalysts that cannot establish a well-defined diffusion layer, we suggest applying external stirring bar to offer certain level of enforced convection and using j0 to compare the activity.

Electronic Supplementary Material

Download File(s)
12274_2023_5792_MOESM1_ESM.pdf (952.3 KB)
12274_2023_5792_MOESM2_ESM.pdf (587.1 KB)

References

[1]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[2]

Pollet, B. G.; Kocha, S. S.; Staffell, I. Current status of automotive fuel cells for sustainable transport. Curr. Opin. Electrochem. 2019, 16, 90–95.

[3]

Zhao, Z. P.; Liu, Z. Y.; Zhang, A.; Yan, X. X.; Xue, W.; Peng, B. S.; Xin, H. L.; Pan, X. Q.; Duan, X. F.; Huang, Y. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 2022, 17, 968–975.

[4]

Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y. S.; Zelenay, P.; Kim, Y. S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184.

[5]

Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.

[6]

Yang, Y.; Xiong, Y.; Holtz, M. E.; Feng, X. R.; Zeng, R.; Chen, G.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc. Natl. Acad. Sci. USA 2019, 116, 24425–24432.

[7]

Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

[8]

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

[9]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

[10]

Wang, J. H.; Zhao, Y.; Setzler, B. P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K. D.; Shi, L. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019, 4, 392–398.

[11]

Shi, L.; Zhao, Y.; Matz, S.; Gottesfeld, S.; Setzler, B. P.; Yan, Y. S. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nat. Energy 2022, 7, 238–247.

[12]

Peng, X.; Kulkarni, D.; Huang, Y.; Omasta, T. J.; Ng, B.; Zheng, Y. W.; Wang, L. Q.; LaManna, J. M.; Hussey, D. S.; Varcoe, J. R. et al. Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat. Commun. 2020, 11, 3561.

[13]

Zalitis, C. M.; Sharman, J.; Wright, E.; Kucernak, A. R. Properties of the hydrogen oxidation reaction on Pt/C catalysts at optimised high mass transport conditions and its relevance to the anode reaction in PEFCs and cathode reactions in electrolysers. Electrochim. Acta 2015, 176, 763–776.

[14]

Lazaridis, T.; Stühmeier, B. M.; Gasteiger, H. A.; El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 2022, 5, 363–373.

[15]

Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529.

[16]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[17]

Setzler, B. P.; Zhuang, Z. B.; Wittkopf, J. A.; Yan, Y. S. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 2016, 11, 1020–1025.

[18]

Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

[19]

Rebollar, L.; Intikhab, S.; Oliveira, N. J.; Yan, Y. S.; Xu, B. J.; McCrum, I. T.; Snyder, J. D.; Tang, M. H. “Beyond dsorption” descriptors in hydrogen electrocatalysis. ACS Catal. 2020, 10, 14747–14762.

[20]

Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.

[21]

Fu, L. H.; Li, Y. B.; Yao, N.; Yang, F. L.; Cheng, G. Z.; Luo, W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322–7327.

[22]

Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

[23]

Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

[24]

Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

[25]

Xue, Y. R.; Shi, L.; Liu, X. R.; Fang, J. J.; Wang, X. D.; Setzler, B. P.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651.

[26]

Duan, Y.; Yu, Z. Y.; Yang, L.; Zheng, L. R.; Zhang, C. T.; Yang, X. T.; Gao, F. Y.; Zhang, X. L.; Yu, X. X.; Liu, R. et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789.

[27]

Sheng, W. C.; Bivens, A. P.; Myint, M.; Zhuang, Z. B.; Forest, R. V.; Fang, Q. R.; Chen, J. G.; Yan, Y. S. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724.

[28]

Wang, M.; Yang, H.; Shi, J. N.; Chen, Y. F.; Zhou, Y.; Wang, L. G.; Di, S. J.; Zhao, X.; Zhong, J.; Cheng, T. et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5771–5777.

[29]

Zhao, X.; Li, X. Y.; An, L. L.; Iputera, K.; Zhu, J.; Gao, P. F.; Liu, R. S.; Peng, Z. M.; Yang, J. L.; Wang, D. L. Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes. Energy Environ. Sci. 2022, 15, 1234–1242.

[30]

Gao, Y. F.; Yang, Y.; Schimmenti, R.; Murray, E.; Peng, H. Q.; Wang, Y. M.; Ge, C. X.; Jiang, W. Y.; Wang, G. W.; DiSalvo, F. J. et al. A completely precious metal-free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proc. Natl. Acad. Sci. USA 2022, 119, e2119883119.

[31]

Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.

[32]

Ni, W. Y.; Wang, T.; Schouwink, P. A.; Chuang, Y. C.; Chen, H. M.; Hu, X. L. Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 10797–10801.

[33]

Yang, Y.; Sun, X. D.; Han, G. Q.; Liu, X.; Zhang, X. Y.; Sun, Y. F.; Zhang, M.; Cao, Z.; Sun, Y. J. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a Ni-based metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 10644–10649.

[34]

Yang, F. L.; Bao, X.; Li, P.; Wang, X. W.; Cheng, G. Z.; Chen, S. L.; Luo, W. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem., Int. Ed. 2019, 58, 14179–14183.

[35]

Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

[36]

Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529.

[37]

Cherstiouk, O. V.; Simonov, P. A.; Oshchepkov, A. G.; Zaikovskii, V. I.; Kardash, T. Y.; Bonnefont, A.; Parmon, V. N.; Savinova, E. R. Electrocatalysis of the hydrogen oxidation reaction on carbon-supported bimetallic NiCu particles prepared by an improved wet chemical synthesis. J. Electroanal. Chem. 2016, 783, 146–151.

[38]

Deng, S. F.; Liu, X. P.; Guo, X. Y.; Zhao, T. H.; Lu, Y.; Cheng, J. Y.; Chen, K.; Shen, T.; Zhu, Y.; Wang, D. L. Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. J. Energy Chem. 2021, 54, 202–207.

[39]

Sun, C.; Zhao, P. C.; Yang, Y. Q.; Li, Z.; Sheng, W. C. Lattice oxygen-induced d-band shifting for enhanced hydrogen oxidation reaction on nickel. ACS Catal. 2022, 12, 11830–11837.

[40]

Roy, A.; Talarposhti, M. R.; Normile, S. J.; Zenyuk, I. V.; De Andrade, V.; Artyushkova, K.; Serov, A.; Atanassov, P. Nickel-copper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell. Sustainable Energy Fuels 2018, 2, 2268–2275.

[41]

Gasteiger, H. A.; Panels, J. E.; Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 2004, 127, 162–171.

[42]

Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

[43]

Qin, S.; Duan, Y.; Zhang, X. L.; Zheng, L. R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Liu, R.; Yang, Y.; Zheng, X. S. et al. Ternary nickel-tungsten-copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 2021, 12, 2686.

[44]

Huang, G. J.; Liang, W. L.; Wu, Y. L.; Li, J. W.; Jin, Y. Q.; Zeng, H. B.; Zhang, H.; Xie, F. Y.; Chen, J.; Wang, N. et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. J. Catal. 2020, 390, 23–29.

[45]

Schmidt, T. J.; Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.; Kolb, D. M.; Behm, R. J. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 1998, 145, 2354–2358.

[46]

Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 2015, 162, F1144–F1158.

[47]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications; Wiley: New York, 2001.
[48]

Yang, Y.; Gao, F. Y.; Zhang, X. L.; Qin, S.; Zheng, L. R.; Wang, Y. H.; Liao, J.; Yang, Q.; Gao, M. R. Suppressing electron back-donation for a highly CO-tolerant fuel cell anode catalyst via cobalt modulation. Angew. Chem., Int. Ed. 2022, 61, e202208040.

[49]

Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 2018, 8, 6665–6690.

[50]

Kucernak, A. R.; Zalitis, C. General models for the electrochemical hydrogen oxidation and hydrogen evolution reactions: Theoretical derivation and experimental results under near mass-transport free conditions. J. Phys. Chem. C 2016, 120, 10721–10745.

[51]

Gennero de Chialvo, M. R.; Chialvo, A. C. Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part I. Theoretical aspects. Phys. Chem. Chem. Phys. 2004, 6, 4009–4017.

[52]

Khadke, P.; Tichter, T.; Boettcher, T.; Muench, F.; Ensinger, W.; Roth, C. A simple and effective method for the accurate extraction of kinetic parameters using differential Tafel plots. Sci. Rep. 2021, 11, 8974.

Nano Research
Pages 10787-10795
Cite this article:
Gao F-Y, Wang Y-H, Yang Y, et al. Towards reliable assessment of hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells. Nano Research, 2023, 16(8): 10787-10795. https://doi.org/10.1007/s12274-023-5792-x
Topics:

1310

Views

10

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 March 2023
Revised: 28 April 2023
Accepted: 02 May 2023
Published: 31 May 2023
© Tsinghua University Press 2023
Return