AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application

Yang Li1,§( )Songtao Ling1,§Ruiyu He1Cheng Zhang1( )Yue Dong1Chunlan Ma1Yucheng Jiang1Ju Gao1Jinghui He2Qichun Zhang3,4( )
Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China

§ Yang Li and Songtao Ling contributed equally to this work.

Show Author Information

Graphical Abstract

A graphene oxide-based memristor with a novel layered structure is presented. The organic pyridinium intercalation succeeds in serving as a buffer layer to control the randomness and the overgrowth of ion migration path, leading to stable progressive bidirectional conductance tuning rather than the disordered abrupt change. The artificial learning of biological synaptic behaviors is achieved, which is a promising advance toward flexible, energy-saving, and fast speed switching bio-inspired neuromorphic computing systems.

Abstract

Graphene oxide (GO)-based memristors offer the promise of low cost, eco-friendliness, and mechanical flexibility, making them attractive candidates for outstanding flexible electronic devices. However, their resistive transitions often display abrupt change rather than bidirectional progressive tuning, which largely limits their applications for biological synapse emulation and neuromorphic computing. Here, a memristor with a novel layered structure of GO/pyridinium/GO is presented with tunable bidirectional feature. The inserted organic pyridinium intercalation succeeds in serving as a satisfactory buffer layer to intrinsically control the formation of conductive filaments during device operation, leading to progressive conductance regulation. Thus, the essential synaptic behaviors including analog memory characteristics, excitatory postsynaptic current, paired pulse facilitation, prepulse inhibition, spike-timing-dependent plasticity, and spike-rate-dependent plasticity are replicated. The emulation of brain-like “learning-forgetting-relearning” process is also implemented. Additionally, the instant responses of the memristor can be stimulated by low operational voltages and short pulse widths. This study paves one way for GO-based memristors to actuate appealing features such as bidirectional tuning and fast speed switching that are desirable for the development of bio-inspired neuromorphic systems.

Electronic Supplementary Material

Download File(s)
12274_2023_5789_MOESM1_ESM.pdf (4.3 MB)

References

[1]

Zahedinejad, M.; Fulara, H.; Khymyn, R.; Houshang, A.; Dvornik, M.; Fukami, S.; Kanai, S.; Ohno, H.; Åkerman, J. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 2022, 21, 81–87.

[2]

Feng, D.; Niu, Z. H.; Yang, J. Y.; Xu, W.; Liu, S. S.; Mao, X.; Li, X. H. Flexible artificial synapse with relearning function based on ion gel-graphene FET. Nano Energy 2021, 90, 106526.

[3]

Portner, K.; Schmuck, M.; Lehmann, P.; Weilenmann, C.; Haffner, C.; Ma, P.; Leuthold, J.; Luisier, M.; Emboras, A. Analog nanoscale electro-optical synapses for neuromorphic computing applications. ACS Nano 2021, 15, 14776–14785.

[4]

Huh, W.; Lee, D.; Lee, C. H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092.

[5]

Lee, G.; Baek, J. H.; Ren, F.; Pearton, S. J.; Lee, G. H.; Kim, J. Artificial neuron and synapse devices based on 2D materials. Small 2021, 17, 2100640.

[6]

Lv, Z. Y.; Wang, Y.; Chen, J. R.; Wang, J. J.; Zhou, Y.; Han, S. T. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006.

[7]

Wang, Y.; Gong, Y.; Yang, L.; Xiong, Z. Y.; Lv, Z. Y.; Xing, X. C.; Zhou, Y.; Zhang, B.; Su, C. L.; Liao, Q. F. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 2021, 31, 2100144.

[8]

Pei, Y. F.; Yan, L.; Wu, Z. H.; Lu, J. K.; Zhao, J. H.; Chen, J. S.; Liu, Q.; Yan, X. B. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 2021, 15, 17319–17326.

[9]

Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

[10]

Meng, J. L.; Wang, T. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 2021, 8, 538–546.

[11]

Kumar, M.; Ahn, Y. H.; Iqbal, S.; Kim, U.; Seo, H. Site-specific regulated memristors via electron-beam-induced functionalization of HfO2. Small 2022, 18, 2105585.

[12]

Wu, P. S.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C. X. et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat 2022, 4, e12275.

[13]

Wang, C.; Wang, T. Y.; Zhang, W. D.; Jiang, J.; Chen, L.; Jiang, A. Q. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Res. 2022, 15, 3606–3613.

[14]

Wang, Z. Y.; Wang, L. Y.; Wu, Y. M.; Bian, L. Y.; Nagai, M.; Jv, R.; Xie, L. H.; Ling, H. F.; Li, Q.; Bian, H. Y. et al. Signal filtering enabled by spike voltage-dependent plasticity in metalloporphyrin-based memristors. Adv. Mater. 2021, 33, 2104370.

[15]

Zhao, X. N.; Xu, J. Q.; Xie, D.; Wang, Z. Q.; Xu, H. Y.; Lin, Y.; Hu, J. L.; Liu, Y. C. Natural acidic polysaccharide-based memristors for transient electronics: Highly controllable quantized conductance for integrated memory and nonvolatile logic applications. Adv. Mater. 2021, 33, 2104023.

[16]

Yao, P.; Wu, H. Q.; Gao, B.; Tang, J. S.; Zhang, Q. T.; Zhang, W. Q.; Yang, J. J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646.

[17]

Cao, G.; Gao, C.; Wang, J. J.; Lan, J. L.; Yan, X. B. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Res. 2022, 15, 8419–8427.

[18]

Yu, T. Q.; He, F. C.; Zhao, J. H.; Zhou, Z. Y.; Chang, J. J.; Chen, J. S.; Yan, X. B. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater. 2021, 64, 727–738.

[19]

Li, Y.; Zhang, C.; Shi, Z. M.; Ma, C. L.; Wang, J.; Zhang, Q. C. Recent advances on crystalline materials-based flexible memristors for data storage and neuromorphic applications. Sci. China Mater. 2022, 65, 2110–2127.

[20]

Hus, S. M.; Ge, R. J.; Chen, P. A.; Liang, L. B.; Donnelly, G. E.; Ko, W.; Huang, F. M.; Chiang, M. H.; Li, A. P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62.

[21]

Mao, J. Y.; Wu, S.; Ding, G. L.; Wang, Z. P.; Qian, F. S.; Yang, J. Q.; Zhou, Y.; Han, S. T. A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride. Small 2022, 18, 2106253.

[22]

Zhou, J.; Li, W.; Chen, Y.; Lin, Y. H.; Yi, M. D.; Li, J. Y.; Qian, Y. Z.; Guo, Y.; Cao, K. Y.; Xie, L. H. et al. A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv. Mater. 2021, 33, 2006201.

[23]
Zhang, B.; Chen, W. L.; Zeng, J. M.; Fan, F.; Gu, J. W.; Chen, X. H.; Yan, L.; Xie, G. J.; Liu, S. Z.; Yan, Q. et al. 90% yield production of polymer Nano-memristor for in-memory computing. Nat. Commun. 2021, 12, 1984.
[24]

Li, Y.; Qian, Q. Y.; Zhu, X. L.; Li, Y. J.; Zhang, M. Y.; Li, J. N.; Ma, C. L.; Li, H.; Lu, J. M.; Zhang, Q. C. Recent advances in organic-based materials for resistive memory applications. InfoMat 2020, 2, 995–1033.

[25]

Fang, Y. T.; Zhai, S. B.; Chu, L.; Zhong, J. S. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces 2021, 13, 17141–17157.

[26]

Zhang, C.; Li, Y.; Ma, C. L.; Zhang, Q. C. Recent progress of organic-inorganic hybrid perovskites in RRAM, artificial synapse, and logic operation. Small Sci. 2022, 2, 2100086.

[27]

John, R. A.; Shah, N.; Vishwanath, S. K.; Ng, S. E.; Febriansyah, B.; Jagadeeswararao, M.; Chang, C. H.; Basu, A.; Mathews, N. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 2021, 12, 3681.

[28]

Zhou, Z.; Xiu, F.; Jiang, T. F.; Xu, J. X.; Chen, J.; Liu, J. Q.; Huang, W. Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. J. Mater. Chem. C 2019, 7, 10764–10768.

[29]

Sokolov, A. S.; Ali, M.; Riaz, R.; Abbas, Y.; Ko, M. J.; Choi, C. Silver-adapted diffusive Memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 2019, 29, 1807504.

[30]

Hou, J.; Zhang, B.; Li, D. Q.; Fu, Y. B.; Liu, G.; Chen, Y. Enabling superior stretchable resistive switching memory via polymer-functionalized graphene oxide nanosheets. J. Mater. Chem. C 2019, 7, 14664–14671.

[31]

Cao, Y. M.; Fu, Y. B.; Li, D. Q.; Zhu, C. X.; Zhang, B.; Chen, Y. Organophosphorus-based polymer covalently functionalized reduced graphene oxide: In-situ synthesis and nonvolatile memory effect. Carbon 2019, 141, 758–767.

[32]

Zhao, X. N.; Wang, Z. Q.; Xie, Y.; Xu, H. Y.; Zhu, J. X.; Zhang, X. T.; Liu, W. Z.; Yang, G. C.; Ma, J. G.; Liu, Y. C. Photocatalytic reduction of graphene oxide-TiO2 nanocomposites for improving resistive-switching memory behaviors. Small 2018, 14, 1801325.

[33]

Chen, T.; Yang, S. W.; Wang, J.; Chen, W.; Liu, L. F.; Wang, Y.; Cheng, S. J.; Zhao, X. Flexible artificial memristive synapse constructed from solution-processed MgO-graphene oxide quantum dot hybrid films. Adv. Electron. Mater. 2021, 7, 2000882.

[34]

Xiong, W.; Zhu, L. Q.; Ye, C.; Ren, Z. Y.; Yu, F.; Xiao, H.; Xu, Z.; Zhou, Y.; Zhou, H.; Lu, H. L. Flexible poly(vinyl alcohol)-graphene oxide hybrid nanocomposite based cognitive memristor with pavlovian-conditioned reflex activities. Adv. Electron. Mater. 2020, 6, 1901402.

[35]

Tan, C. L.; Liu, Z. D.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 2615–2628.

[36]

He, C. L.; Zhuge, F.; Zhou, X. F.; Li, M.; Zhou, G. C.; Liu, Y. W.; Wang, J. Z.; Chen, B.; Su, W. J.; Liu, Z. P. et al. Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 2009, 95, 232101.

[37]

Wang, X. M.; Xie, W. G.; Xu, J. B. Graphene based non-volatile memory devices. Adv. Mater. 2014, 26, 5496–5503.

[38]

Varun, I.; Bharti, D.; Mahato, A. K.; Raghuwanshi, V.; Tiwari, S. P. High-performance flexible resistive RAM with PVP: GO composite and ultrathin HfOx hybrid bilayer. IEEE Trans. Electron Devices 2020, 67, 949–954.

[39]

Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Noeh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X. Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect. Adv. Mater. 2010, 22, 1731–1735.

[40]

Wang, S.; Manga, K. K.; Zhao, M.; Bao, Q. L.; Loh, K. P. Wrapping graphene sheets around organic wires for making memory devices. Small 2011, 7, 2372–2378.

[41]

Yan, X. B.; Zhang, L.; Chen, H. W.; Li, X. Y.; Wang, J. J.; Liu, Q.; Lu, C.; Chen, J. S.; Wu, H. Q.; Zhou, P. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 2018, 28, 1803728.

[42]

Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S. Y.; Colombo, L.; Bonaccorso, F.; Samorì, P. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 2019, 31, 1806663.

[43]

Rani, A.; Kim, D. H. A mechanistic study on graphene-based nonvolatile ReRAM devices. J. Mater. Chem. C 2016, 4, 11007–11031.

[44]

Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R Rep. 2014, 83, 1–59.

[45]

Zhao, F.; Liu, J. Q.; Huang, X.; Zou, X.; Lu, G.; Sun, P. J.; Wu, S. X.; Ai, W.; Yi, M. D.; Qi, X. Y. et al. Chemoselective photodeoxidization of graphene oxide using sterically hindered amines as catalyst: Synthesis and applications. ACS Nano 2012, 6, 3027–3033.

[46]

Cui, P.; Seo, S.; Lee, J.; Wang, L. Y.; Lee, E.; Min, M.; Lee, H. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 2011, 5, 6826–6833.

[47]

Wan, C. J.; Zhu, L. Q.; Liu, Y. H.; Feng, P.; Liu, Z. P.; Cao, H. L.; Xiao, P.; Shi, Y.; Wan, Q. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 2016, 28, 3557–3563.

[48]

Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J. E.; Lee, J. Y.; Yoon, T. H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S. et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386.

[49]

Lorenc, J.; Bryndal, I.; Marchewka, M.; Kucharska, E.; Lis, T.; Hanuza, J. Crystal and molecular structure of 2-amino-5-chloropyridinium hydrogen selenate-its IR and Raman spectra, DFT calculations and physicochemical properties. J. Raman Spectrosc. 2008, 39, 863–872.

[50]

Song, Y. G.; Suh, J. M.; Park, J. Y.; Kim, J. E.; Chun, S. Y.; Kwon, J. U.; Lee, H.; Jang, H. W.; Kim, S.; Kang, C. Y. et al. Artificial adaptive and maladaptive sensory receptors based on a surface-dominated diffusive memristor. Adv. Sci. 2022, 9, 2103484.

[51]

Xiong, H. L.; Ling, S. T.; Li, Y.; Duan, F.; Zhu, H.; Lu, S. L.; Du, M. L. Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. J. Colloid. Interface Sci. 2022, 608, 1126–1134.

[52]

Ren, Y.; Chang, C. L.; Ting, L. Y.; Zhou, L.; Mao, J. Y.; Zhang, S. R.; Chou, H. H.; Yang, J. Q.; Zhou, Y.; Han, S. T. Flexible pyrene/phenanthro[9, 10-d]imidazole-based memristive devices for mimicking synaptic plasticity. Adv. Intell. Syst. 2019, 1, 1900008.

[53]

Raeis-Hosseini, N.; Park, Y.; Lee, J. S. Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv. Funct. Mater. 2018, 28, 1800553.

[54]

Zhao, Y. Y.; Sun, W. J.; Wang, J.; He, J. H.; Li, H.; Xu, Q. F.; Li, N. J.; Chen, D. Y.; Lu, J. M. All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv. Funct. Mater. 2020, 30, 2004245.

[55]

Huang, H. M.; Wang, Z.; Wang, T.; Xiao, Y.; Guo, X. Artificial neural networks based on memristive devices: From device to system. Adv. Intell. Syst. 2020, 2, 2000149.

[56]

Chang, T.; Jo, S. H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676.

[57]

Wang, K. Y.; Chen, J. S.; Yan, X. B. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 2021, 79, 105453.

[58]

Kwon, K. C.; Baek, J. H.; Hong, K.; Kim, S. Y.; Jang, H. W. Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 2022, 14, 58.

[59]

Yang, J. Q.; Wang, R. P.; Ren, Y.; Mao, J. Y.; Wang, Z. P.; Zhou, Y.; Han, S. T. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv. Mater. 2020, 32, 2003610.

[60]

Pei, Y. F.; Li, Z. Q.; Li, B.; Zhao, Y.; He, H.; Yan, L.; Li, X. Y.; Wang, J. J.; Zhao, Z.; Sun, Y. et al. A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS-core/shell (SC) nanorod arrays optoelectronic memristor. Adv. Funct. Mater. 2022, 32, 2203454.

[61]

Huang, W.; Xia, X. W.; Zhu, C.; Steichen, P.; Quan, W. D.; Mao, W. W.; Yang, J. P.; Chu, L.; Li, X. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 2021, 13, 85.

[62]

Wang, T. Y.; Meng, J. L.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhang, D. W. Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 2021, 3, 212–221.

[63]

Ambrogio, S.; Balatti, S.; Choi, S.; Ielmini, D. Impact of the mechanical stress on switching characteristics of electrochemical resistive memory. Adv. Mater. 2014, 26, 3885–3892.

[64]

Hsiung, C. P.; Liao, H. W.; Gan, J. Y.; Wu, T. B.; Hwang, J. C.; Chen, F.; Tsai, M. J. Formation and instability of silver Nanofilament in Ag-based programmable metallization cells. ACS Nano 2010, 4, 5414–5420.

[65]

Jaafar, A. H.; Kemp, N. T. Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices. Carbon 2019, 153, 81–88.

[66]

Gu, C.; Mao, H. W.; Tao, W. Q.; Zhou, Z.; Wang, X. J.; Tan, P.; Cheng, S.; Huang, W.; Sun, L. B.; Liu, X. Q. et al. Facile synthesis of Ti3C2Tx-poly(vinylpyrrolidone) nanocomposites for nonvolatile memory devices with low switching voltage. ACS Appl. Mater. Interfaces 2019, 11, 38061–38067.

[67]

Mao, H. W.; Gu, C.; Yan, S. Q.; Xin, Q.; Cheng, S.; Tan, P.; Wang, X. J.; Xiu, F.; Liu, X. Q.; Liu, J. Q. et al. MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron. Mater. 2020, 6, 1900493.

[68]

Yang, Y. F.; Xu, M. K.; Jia, S. J.; Wang, B. L.; Xu, L. J.; Wang, X. X.; Liu, H.; Liu, Y. S.; Guo, Y. Z.; Wang, L. D. et al. A new opportunity for the emerging tellurium semiconductor: Making resistive switching devices. Nat. Commun. 2021, 12, 6081.

[69]

Yang, C. S.; Shang, D. S.; Chai, Y. S.; Yan, L. Q.; Shen, B. G.; Sun, Y. N. Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys. Chem. Chem. Phys. 2016, 18, 12466–12475.

[70]

Shen, Y. Q.; Zheng, W. W.; Zhu, K. C.; Xiao, Y. P.; Wen, C.; Liu, Y. W.; Jing, X.; Lanza, M. Variability and yield in h-BN-based memristive circuits: The role of each type of defect. Adv. Mater. 2021, 33, 2103656.

[71]

Du, C. Y.; Qu, Z. Y.; Ren, Y. Y.; Zhai, Y. B.; Chen, J. M.; Gao, L. L.; Zhou, Y.; Han, S. T. Grain boundary confinement of silver imidazole for resistive switching. Adv. Funct. Mater. 2022, 32, 2108598.

[72]

Zhang, C.; Li, Y.; Yu, F.; Wang, G.; Wang, K. B.; Ma, C. L.; Yang, X. B.; Zhou, Y.; Zhang, Q. C. Visual growth of nano-HOFs for low-power memristive spiking neuromorphic system. Nano Energy 2023, 109, 108274.

Nano Research
Pages 11278-11287
Cite this article:
Li Y, Ling S, He R, et al. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Research, 2023, 16(8): 11278-11287. https://doi.org/10.1007/s12274-023-5789-5
Topics:

1168

Views

20

Crossref

19

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 07 February 2023
Revised: 17 April 2023
Accepted: 02 May 2023
Published: 24 May 2023
© Tsinghua University Press 2023
Return