Journal Home > Volume 16 , Issue 9

Rapid advances in artificial intelligence, robotics, and remote healthcare have increased the demand for sustainable and high-performance wearable sensors. Triboelectric devices are gaining traction due to their self-powered operation capability and potential as wearable energy harvesters. Skin-interfaced triboelectric sensors (SITSs) can detect various mechanical signals and monitor physiological signals in real-time. Biopolymer-based SITSs are ideal for skin-interfaced applications since they are biocompatible and biodegradable. This review focuses on the recent advancements of SITS made from biocompatible polymer materials, such as plant-based, animal-based, and synthetic polymers, and highlights their potential for various applications, including human–machine interface (HMI) and physiological sensing. In addition, the fundamentals, challenges, and prospects of SITS based on biocompatible polymers are discussed.


menu
Abstract
Full text
Outline
About this article

Biopolymers-based skin-interfaced triboelectric sensors

Show Author's information Shujia Xu1,2,§Pedro Henrique de Souza Barbosa1,2,§Wenzhuo Wu1,2,3,4,5( )
School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
Flex Laboratory, Purdue University, West Lafayette, IN 47907, USA
Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
The Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University, West Lafayette, IN 47907, USA

§ Shujia Xu and Pedro Henrique de Souza Barbosa contributed equally to this work.

Abstract

Rapid advances in artificial intelligence, robotics, and remote healthcare have increased the demand for sustainable and high-performance wearable sensors. Triboelectric devices are gaining traction due to their self-powered operation capability and potential as wearable energy harvesters. Skin-interfaced triboelectric sensors (SITSs) can detect various mechanical signals and monitor physiological signals in real-time. Biopolymer-based SITSs are ideal for skin-interfaced applications since they are biocompatible and biodegradable. This review focuses on the recent advancements of SITS made from biocompatible polymer materials, such as plant-based, animal-based, and synthetic polymers, and highlights their potential for various applications, including human–machine interface (HMI) and physiological sensing. In addition, the fundamentals, challenges, and prospects of SITS based on biocompatible polymers are discussed.

Keywords: wearable devices, skin interfaced, triboelectric sensors, biopolymers

References(358)

[1]

Shi, Q. F.; Zhang, Z. X.; Yang, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 2021, 15, 18312–18326.

[2]

Zhang, Q.; Xin, C. F.; Shen, F.; Gong, Y.; Zi, Y. L.; Guo, H. Y.; Li, Z. J.; Peng, Y.; Zhang, Q.; Wang, Z. L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing, and communication. Energy Environ. Sci. 2022, 15, 3688–3721.

[3]

Sun, Z. D.; Zhu, M. L.; Lee, C. Progress in the triboelectric human–machine interfaces (HMIs)—Moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Adv. 2021, 1, 81–120.

[4]

Zhou, L. L.; Liu, D.; Wang, J.; Wang, Z. L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 2020, 8, 481–506.

[5]

Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

[6]

Lu, D. J.; Liu, T.; Meng, X. J.; Luo, B.; Yuan, J. X.; Liu, Y. H.; Zhang, S.; Cai, C. C.; Gao, C.; Wang, J. L. et al. Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 2023, 35, 2209117.

[7]

Zhu, M. L.; He, T. Y. Y.; Lee, C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 2020, 7, 031305.

[8]

Chun, S.; Kim, J. S.; Yoo, Y.; Choi, Y.; Jung, S. J.; Jang, D.; Lee, G.; Song, K. I.; Nam, K. S.; Youn, I. et al. An artificial neural tactile sensing system. Nat. Electron. 2021, 4, 429–438.

[9]

Zhao, T. M.; Fu, Y. M.; Sun, C. X.; Zhao, X. S.; Jiao, C. X.; Du, A.; Wang, Q.; Mao, Y. P.; Liu, B. D. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens. Bioelectron. 2022, 205, 114115.

[10]

Hou, C.; Xu, Z. J.; Qiu, W.; Wu, R. H.; Wang, Y. N.; Xu, Q. C.; Liu, X. Y.; Guo, W. X. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 2019, 15, 1805084.

[11]

Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

[12]

Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J. Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

[13]
Wu, W. Z.; Wang, Z. L. Self-Powered 3D Nanosensor Systems for Mechanical Interfacing Applications. In Convergence of More Moore, More than Moore and Beyond Moore; Jenny Stanford Publishing: England & Wales, 2021.
DOI
[14]

Gunawardhana, K. R. S. D.; Wanasekara, N. D.; Dharmasena, R. D. I. G. Towards truly wearable systems: Optimizing and scaling up wearable triboelectric nanogenerators. iScience 2020, 23, 101360.

[15]

Zhu, M. L.; Shi, Q. F.; He, T. Y. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.

[16]

Cha, S. N.; Seo, J. S.; Kim, S. M.; Kim, H. J.; Park, Y. J.; Kim, S. W.; Kim, J. M. Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 2010, 22, 4726–4730.

[17]

Chun, J.; Lee, K. Y.; Kang, C. Y.; Kim, M. W.; Kim, S. W.; Baik, J. M. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 2014, 24, 2038–2043.

[18]

Zhou, Q. T.; Pan, J.; Deng, S. J.; Xia, F.; Kim, T. Triboelectric nanogenerator-based sensor systems for chemical or biological detection. Adv. Mater. 2021, 33, 2008276.

[19]

Basset, P.; Beeby, S. P.; Bowen, C.; Chew, Z. J.; Delbani, A.; Dharmasena, R. D. I. G.; Dudem, B.; Fan, F. R.; Galayko, D.; Guo, H. Y. et al. Roadmap on nanogenerators and piezotronics. APL Mater. 2022, 10, 109201.

[20]

Liu, D.; Zhou, L. L.; Cui, S. N.; Gao, Y. K.; Li, S. X.; Zhao, Z. H.; Yi, Z. Y.; Zou, H. Y.; Fan, Y. J.; Wang, J. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019.

[21]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[22]

Zou, H. Y.; Guo, L. T.; Xue, H.; Zhang, Y.; Shen, X. F.; Liu, X. T.; Wang, P. H.; He, X.; Dai, G. Z.; Jiang, P. et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093.

[23]

Zhao, G. R.; Gong, S. B.; Wang, H. G.; Ren, J. F.; Wang, N.; Yang, Y. W.; Gao, G.; Chen, S. S.; Li, L. L. Ultrathin biocompatible electrospun fiber films for self-powered human motion sensor. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 855–868.

[24]

Kim, D. W.; Kim, S. W.; Jeong, U. Lipids: Source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 2018, 30, 1804949.

[25]

Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.

[26]

Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, 1804944.

[27]

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

[28]

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

[29]

Xiong, J. Q.; Cui, P.; Chen, X. L.; Wang, J. X.; Parida, K.; Lin, M. F.; Lee, P. S. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.

[30]

Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F. et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456.

[31]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[32]

Su, Y. J.; Wang, J. J.; Wang, B.; Yang, T. N.; Yang, B. X.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Cai, Z. X. et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075.

[33]

He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. B.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

[34]

Zhang, H.; Zhang, J. W.; Hu, Z. W.; Quan, L. W.; Shi, L.; Chen, J. K.; Xuan, W. P.; Zhang, Z. C.; Dong, S. R.; Luo, J. K. Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy 2019, 59, 75–83.

[35]

Wang, S.; Jiang, Y. D.; Tai, H. L.; Liu, B. H.; Duan, Z. H.; Yuan, Z.; Pan, H.; Xie, G. Z.; Du, X. S.; Su, Y. J. An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019, 63, 103829.

[36]

Wang, R. X.; Mu, L. W.; Bao, Y. K.; Lin, H.; Ji, T.; Shi, Y. J.; Zhu, J. H.; Wu, W. Z. Holistically engineered polymer–polymer and polymer–ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 2020, 32, 2002878.

[37]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[38]

Chen, C. H.; Lee, P. W.; Tsao, Y. H.; Lin, Z. H. Utilization of self-powered electrochemical systems: Metallic nanoparticle synthesis and lactate detection. Nano Energy 2017, 42, 241–248.

[39]

Cai, J.; Zhang, Z. X. A recyclable triboelectric nanogenerator integrated into insole for sensing human motion. Mater. Technol. 2022, 37, 1486–1493.

[40]

Lou, M. N.; Abdalla, I.; Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1597–1605.

[41]

Yang, H. M.; Fan, F. R.; Xi, Y.; Wu, W. Z. Bio-derived natural materials based triboelectric devices for self-powered ubiquitous wearable and implantable intelligent devices. Adv. Sustainable Syst. 2020, 4, 2000108.

[42]

Yang, H.; Wang, R.; Wu, W. Roadmap on bio-derived materials for wearable triboelectric devices. Mater. Today Sustainabil. 2022, 20, 100219.

[43]

Wu, R. H.; Ma, L. Y.; Hou, C.; Meng, Z. H.; Guo, W. X.; Yu, W. D.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. Small 2019, 15, 1901558.

[44]

Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.

[45]

Chao, S. Y.; Ouyang, H.; Jiang, D. J.; Fan, Y. B.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072.

[46]

Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Progr. Polym. Sci. 2009, 34, 516–560.

[47]

Xu, Z. J.; Qiu, W.; Fan, X. W.; Shi, Y. T.; Gong, H.; Huang, J. N.; Patil, A.; Li, X. Y.; Wang, S. T.; Lin, H. B. et al. Stretchable, stable, and degradable silk fibroin enabled by mesoscopic doping for finger motion triggered color/transmittance adjustment. ACS Nano 2021, 15, 12429–12437.

[48]

Torres, F. G.; De-La-Torre, G. E. Polysaccharide-based triboelectric nanogenerators: A review. Carbohydr. Polym. 2021, 251, 117055.

[49]

Cao, L. L.; Qiu, X.; Jiao, Q.; Zhao, P. Y.; Li, J. J.; Wei, Y. P. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review. Int. J. Biol. Macromol. 2021, 173, 225–243.

[50]

Cheng, S. M.; Lou, Z. R.; Zhang, L.; Guo, H. T.; Wang, Z. T.; Guo, C. F.; Fukuda, K.; Ma, S. H.; Wang, G. Q.; Someya, T. et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 2023, 35, 2206793.

[51]

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

[52]

Peng, X.; Dong, K.; Zhang, Y. F.; Wang, L. L.; Wei, C. H.; Lv, T. M.; Wang, Z. L.; Wu, Z. Y. Sweat-permeable, biodegradable, transparent, and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 2022, 32, 2112241.

[53]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[54]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[55]

Cao, R.; Zhao, S. Y.; Li, C. J. Free deformable nanofibers enhanced tribo-sensors for sleep and tremor monitoring. ACS Appl. Electron. Mater. 2019, 1, 2301–2307.

[56]

Zhu, Z. Y.; Xia, K. Q.; Xu, Z. W.; Lou, H. J.; Zhang, H. Z. Starch paper-based triboelectric nanogenerator for human perspiration sensing. Nanoscale Res. Lett. 2018, 13, 365.

[57]

Wen, D. L.; Liu, X.; Deng, H. T.; Sun, D. H.; Qian, H. Y.; Brugger, J.; Zhang, X. S. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 2019, 66, 104123.

[58]

Chu, H.; Jang, H.; Lee, Y.; Chae, Y.; Ahn, J. H. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 2016, 27, 298–305.

[59]

Zhu, M. M.; Wang, Y. B.; Lou, M. N.; Yu, J. Y.; Li, Z. L.; Ding, B. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 2021, 81, 105669.

[60]

Kanokpaka, P.; Chang, L. Y.; Wang, B. C.; Huang, T. H.; Shih, M. J.; Hung, W. S.; Lai, J. Y.; Ho, K. C.; Yeh, M. H. Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat. Nano Energy 2022, 100, 107464.

[61]

Meng, K. Y.; Xiao, X.; Liu, Z. X.; Shen, S.; Tat, T.; Wang, Z. H.; Lu, C. Y.; Ding, W. B.; He, X. M.; Yang, J. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 2022, 34, 2202478.

[62]

Abe, Y.; Nishizawa, M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng. 2021, 5, 041509.

[63]

Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J. C.; Wong, J. K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2016, 25, 92–98.

[64]

Roger, M.; Fullard, N.; Costello, L.; Bradbury, S.; Markiewicz, E.; O’Reilly, S.; Darling, N.; Ritchie, P.; Määttä, A.; Karakesisoglou, I. et al. Bioengineering the microanatomy of human skin. J. Anat. 2019, 234, 438–455.

[65]

Proksch, E.; Brandner, J. M.; Jensen, J. M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072.

[66]

Edwards, C.; Marks, R. Evaluation of biomechanical properties of human skin. Clin. Dermatol. 1995, 13, 375–380.

[67]

Crowther, J. M.; Sieg, A.; Blenkiron, P.; Marcott, C.; Matts, P. J.; Kaczvinsky, J. R.; Rawlings, A. V. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients, and hydration in vivo. Br. J. Dermatol. 2008, 159, 567–577.

[68]

Balañá, M. E.; Charreau, H. E.; Leirós, G. J. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J. Stem Cells 2015, 7, 711–727.

[69]

Edelberg, R. Relation of electrical properties of skin to structure and physiologic state. J. Invest. Dermatol. 1977, 69, 324–327.

[70]

Matsumoto, T.; Yuasa, H.; Kai, R.; Ueda, H.; Ogura, S.; Honda, Y. Skin capacitance in normal and atopic infants, and effects of moisturizers on atopic skin. J. Dermatol. 2007, 34, 447–450.

[71]

Blichmann, C. W.; Serup, J. Assessment of skin moisture. Measurement of electrical conductance, capacitance, and transepidermal water loss. Acta Derm. Venereol. 1988, 68, 284–290.

[72]

Kawai, E.; Nakanishi, J.; Kumazawa, N.; Ozawa, K.; Denda, M. Skin surface electric potential as an indicator of skin condition: A new, non-invasive method to evaluate epidermal condition. Exp. Dermatol. 2008, 17, 688–692.

[73]

Grimnes, S. Dielectric breakdown of human skin in vivo. Med. Biol. Eng. Comput. 1983, 21, 379–381.

[74]
Weaver, J. C. Electroporation theory. In Plant Cell Electroporation and Electrofusion Protocols; Nickoloff, J. A., Ed.; Springer: Totowa, 1995, pp 3–28.
[75]

Pliquett, U.; Gallo, S.; Hui, S. W.; Gusbeth, C.; Neumann, E. Local and transient structural changes in stratum corneum at high electric fields: Contribution of Joule heating. Bioelectrochemistry 2005, 67, 37–46.

[76]

Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604–608.

[77]

Li, W. J.; Lu, L. Q.; Kottapalli, A. G. P.; Pei, Y. T. Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 2022, 95, 107018.

[78]

Pabst, O.; Martinsen, Ø. G.; Chua, L. The non-linear electrical properties of human skin make it a generic memristor. Sci. Rep. 2018, 8, 15806.

[79]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[80]

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

[81]

Liu, Y. H.; Mo, J. L.; Fu, Q.; Lu, Y. X.; Zhang, N.; Wang, S. F.; Nie, S. X. Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 2020, 30, 2004714.

[82]

Liu, Y. H.; Fu, Q.; Mo, J. L.; Lu, Y. X.; Cai, C. C.; Luo, B.; Nie, S. X. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 2021, 89, 106369.

[83]

Ates, H. C.; Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 2023, 1, 80–82.

[84]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[85]

Peng, J.; Kang, S. D.; Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576.

[86]
Tang, S.; Chang, W. X.; Li, G.; Sun, J. F.; Du, Y.; Hui, X. D.; Tang, Q.; Hu, Z. H.; Li, J. Q.; Chen, J. et al. High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Res., in press, https://doi.org/10.1007/s12274-023-5476-6.
DOI
[87]

He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

[88]

He, W. C.; Shan, C. C.; Fu, S. K.; Wu, H. Y.; Wang, J.; Mu, Q. J.; Li, G.; Hu, C. G. Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 2023, 35, 2209657.

[89]

Dharmasena, R. D. I. G.; Silva, S. R. P. Towards optimized triboelectric nanogenerators. Nano Energy 2019, 62, 530–549.

[90]

He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; Xi, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research (Wash D C) 2022, 2022, 9812865.

[91]
Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill College: New York, 1959.
[92]

Kim, D. W.; Lee, J. H.; Kim, J. K.; Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 2020, 12, 6.

[93]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[94]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[95]

Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

[96]

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

[97]

Gao, S. J.; Wang, R. X.; Ma, C. X.; Chen, Z. H.; Wang, Y. X.; Wu, M.; Tang, Z. Y.; Bao, N.; Ding, D.; Wu, W. X. et al. Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface. J. Mater. Chem. A 2019, 7, 7109–7117.

[98]

Sha, Z.; Boyer, C.; Li, G.; Yu, Y. Y.; Allioux, F. M.; Kalantar-Zadeh, K.; Wang, C. H.; Zhang, J. Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. Nano Energy 2022, 92, 106713.

[99]

Liu, X.; Sun, X. R.; Luo, C.; Ma, H. Z.; Yu, H.; Shao, Y.; Yang, M. B.; Yin, B. Improvement in the output performance of polyethylene oxide-based triboelectric nanogenerators by introducing core–shell Ag@SiO2 particles. J. Mater. Chem. C 2021, 10, 265–273.

[100]

Busolo, T.; Ura, D. P.; Kim, S. K.; Marzec, M. M.; Bernasik, A.; Stachewicz, U.; Kar-Narayan, S. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy 2019, 57, 500–506.

[101]

Babu, A.; Malik, P.; Das, N.; Mandal, D. Surface potential tuned single active material comprised triboelectric nanogenerator for a high performance voice recognition sensor. Small 2022, 18, 2201331.

[102]

Luo, C.; Shao, Y.; Yu, H.; Ma, H. Z.; Zhang, Y. H.; Yin, B.; Yang, M. B. Improving the output performance of bacterial cellulose-based triboelectric nanogenerators by modulating the surface potential in a simple method. ACS Sustainable Chem. Eng. 2022, 10, 13050–13058.

[103]

Cui, N. Y.; Gu, L.; Lei, Y. M.; Liu, J. M.; Qin, Y.; Ma, X. H.; Hao, Y.; Wang, Z. L. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano 2016, 10, 6131–6138.

[104]

Kim, D. W.; Lee, J. H.; You, I.; Kim, J. K.; Jeong, U. Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy 2018, 50, 192–200.

[105]

Lai, M. H.; Du, B. L.; Guo, H. Y.; Xi, Y.; Yang, H. K.; Hu, C. G.; Wang, J.; Wang, Z. L. Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl. Mater. Interfaces 2018, 10, 2158–2165.

[106]

Xu, W.; Wong, M. C.; Hao, J. H. Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy 2019, 55, 203–215.

[107]

Xie, X. K.; Chen, X. P.; Zhao, C.; Liu, Y. N.; Sun, X. H.; Zhao, C. Z.; Wen, Z. Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 2021, 79, 105439.

[108]

Lee, J. H.; Yu, I.; Hyun, S.; Kim, J. K.; Jeong, U. Remarkable increase in triboelectrification by enhancing the conformable contact and adhesion energy with a film-covered pillar structure. Nano Energy 2017, 34, 233–241.

[109]

Xu, C.; Zhang, B. B.; Wang, A. C.; Zou, H. Y.; Liu, G. L.; Ding, W. B.; Wu, C. S.; Ma, M.; Feng, P. Z.; Lin, Z. Q. et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019, 13, 2034–2041.

[110]

Bilici, M. A.; Toth, J. R.; Sankaran, R. M.; Lacks, D. J. Particle size effects in particle–particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system. Rev. Sci. Instrum. 2014, 85, 103903.

[111]

Shinbrot, T.; Komatsu, T. S.; Zhao, Q. Spontaneous tribocharging of similar materials. Europhys. Lett. 2008, 83, 24004.

[112]

Liu, Z.; Li, H.; Shi, B. J.; Fan, Y. B.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

[113]

Kim, T.; Park, C.; Samuel, E. P.; An, S.; Aldalbahi, A.; Alotaibi, F.; Yarin, A. L.; Yoon, S. S. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 10013–10025.

[114]
Liu, X.; Vega, K.; Maes, P.; Paradiso, J. A. Wearability factors for skin interfaces. In Proceedings of the 7th Augmented Human International Conference 2016, Geneva, Switzerland, 2016, pp 21.
DOI
[115]

Ray, T. R.; Choi, J.; Bandodkar, A. J.; Krishnan, S.; Gutruf, P.; Tian, L. M.; Ghaffari, R.; Rogers, J. A. Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 2019, 119, 5461–5533.

[116]

Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

[117]

Liu, X. H.; Su, G. H.; Guo, Q. Q.; Lu, C. H.; Zhou, T.; Zhou, C. L.; Zhang, X. X. Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv. Funct. Mater. 2018, 28, 1706658.

[118]

Ma, Z. H.; Meng, B.; Wang, Z. Y.; Yuan, C. C.; Liu, Z. W.; Zhang, W. G.; Peng, Z. C. A triboelectric-piezoresistive hybrid sensor for precisely distinguishing transient processes in mechanical stimuli. Nano Energy 2020, 78, 105216.

[119]

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

[120]

You, I.; Mackanic, D. G.; Matsuhisa, N.; Kang, J.; Kwon, J.; Beker, L.; Mun, J.; Suh, W.; Kim, T. Y.; Tok, J. B. H. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020, 370, 961–965.

[121]

Delhaye, B. P.; Jarocka, E.; Barrea, A.; Thonnard, J. L.; Edin, B.; Lefèvre, P. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset. Elife 2021, 10, e64679.

[122]
Shimura, T.; Sato, S.; Zalar, P.; Matsuhisa, N. Engineering the comfort-of-wear for next generation wearables. Adv. Electr. Mater., in press, https://doi.org/10.1002/aelm.202200512.
DOI
[123]

Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

[124]

Ní Annaidh, A.; Bruyère, K.; Destrade, M.; Gilchrist, M. D.; Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139–148.

[125]

Ma, Y. J.; Feng, X.; Rogers, J. A.; Huang, Y. G.; Zhang, Y. H. Design and application of “J-shaped” stress–strain behavior in stretchable electronics: A review. Lab A Chip 2017, 17, 1689–1704.

[126]

Jang, K. I.; Chung, H. U.; Xu, S.; Lee, C. H.; Luan, H. W.; Jeong, J.; Cheng, H. Y.; Kim, G. T.; Han, S. Y.; Lee, J. W. et al. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 2015, 6, 6566.

[127]

Ma, Q.; Cheng, H. Y.; Jang, K. I.; Luan, H. W.; Hwang, K. C.; Rogers, J. A.; Huang, Y. G.; Zhang, Y. H. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. J. Mech. Phys. Solids 2016, 90, 179–202.

[128]

Jungebluth, P.; Haag, J. C.; Sjöqvist, S.; Gustafsson, Y.; Rodríguez, A. B.; Del Gaudio, C.; Bianco, A.; Dehnisch, I.; Uhlén, P.; Baiguera, S. et al. Tracheal tissue engineering in rats. Nat. Protoc. 2014, 9, 2164–2179.

[129]

Ban, E.; Barocas, V. H.; Shephard, M. S.; Picu, C. R. Effect of fiber crimp on the elasticity of random fiber networks with and without embedding matrices. J. Appl. Mech. 2016, 83, 041008.

[130]
Reddy, J. N. Theory and Analysis of Elastic Plates and Shells, 2nd ed.; CRC Press: Boca Raton, 2006
DOI
[131]

Hao, Y. L.; Li, S. J.; Sun, S. Y.; Yang, R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti-Nb-based alloys. Mater. Sci. Eng. A 2006, 441, 112–118.

[132]

Matsumoto, H.; Watanabe, S.; Masahashi, N.; Hanada, S. Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys. Metall. Mater. Trans. A 2006, 37, 3239–3249.

[133]

Arrakhiz, F. Z.; El Achaby, M.; Kakou, A. C.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Mater. Des. 2012, 37, 379–383.

[134]

Duxson, P.; Provis, J. L.; Lukey, G. C.; Mallicoat, S. W.; Kriven, W. M.; van Deventer, J. S. J. Understanding the relationship between geopolymer composition, microstructure, and mechanical properties. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 269, 47–58.

[135]

Rajabi, A.; Ghazali, M. J.; Daud, A. R. Chemical composition, microstructure, and sintering temperature modifications on mechanical properties of TiC-based cermet—A review. Mater. Des. 2015, 67, 95–106.

[136]

Yang, Z. J.; Cao, J. H.; Yu, W. X.; Hou, S. S.; Wang, G. L.; Lang, S. T.; Ding, P. Effects of microstructure characteristics on the mechanical properties and elastic modulus of a new Ti-6Al-2Nb-2Zr-0.4B alloy. Mater. Sci. Eng. A 2021, 820, 141564.

[137]

Hopcroft, M. A.; Nix, W. D.; Kenny, T. W. What is the Young’s modulus of silicon. J. Microelectromech. Syst. 2010, 19, 229–238.

[138]

Fedorchenko, A. I.; Wang, A. B.; Cheng, H. H. Thickness dependence of nanofilm elastic modulus. Appl. Phys. Lett. 2009, 94, 152111.

[139]

Stafford, C. M.; Vogt, B. D.; Harrison, C.; Julthongpiput, D.; Huang, R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules 2006, 39, 5095–5099.

[140]

Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.

[141]

Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680.

[142]

Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

[143]

Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325.

[144]

Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266.

[145]

Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789.

[146]

Qi, F. Y.; Zhao, C.; Wang, C. Y.; Jia, X. T.; Weng, L.; He, T. T.; Min, Y. G. Polyaniline electrochemically deposited on tailored metal mesh for dynamically stretchable supercapacitors. J. Electrochem. Soc. 2019, 166, A3932–A3939.

[147]

Wang, Z. H.; Zhang, L.; Liu, J.; Li, C. Z. Highly stretchable, sensitive, and transparent strain sensors with a controllable in-plane mesh structure. ACS Appl. Mater. Interfaces 2019, 11, 5316–5324.

[148]

Min, H.; Jang, S.; Kim, D. W.; Kim, J.; Baik, S.; Chun, S.; Pang, C. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl. Mater. Interfaces 2020, 12, 14425–14432.

[149]

Lee, K.; Ni, X. Y.; Lee, J. Y.; Arafa, H.; Pe, D. J.; Xu, S.; Avila, R.; Irie, M.; Lee, J. H.; Easterlin, R. L. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 2020, 4, 148–158.

[150]

Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626–6633.

[151]

Dang, W. T.; Manjakkal, L.; Navaraj, W. T.; Lorenzelli, L.; Vinciguerra, V.; Dahiya, R. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 2018, 107, 192–202.

[152]

Xu, L. Z.; Gutbrod, S. R.; Ma, Y. J.; Petrossians, A.; Liu, Y. H.; Webb, R. C.; Fan, J. A.; Yang, Z. J.; Xu, R. X.; Whalen III, J. J. et al. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 2015, 27, 1731–1737.

[153]

Yun, J.; Lee, H.; Song, C.; Jeong, Y. R.; Park, J. W.; Lee, J. H.; Kim, D. S.; Keum, K.; Kim, M. S.; Jin, S. W. et al. A fractal-designed stretchable and transparent microsupercapacitor as a skin-attachable energy storage device. Chem. Eng. J. 2020, 387, 124076.

[154]

Li, H. G.; Wang, Z. C.; Sun, M. Z.; Zhu, H. J.; Liu, H. Z.; Tang, C. Y.; Xu, L. Z. Breathable and skin-conformal electronics with hybrid integration of microfabricated multifunctional sensors and kirigami-structured nanofibrous substrates. Adv. Funct. Mater. 2022, 32, 2202792.

[155]

Hwang, D.; Barron, E. J.; Haque, A. B. M. T.; Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 2022, 7, eabg2171.

[156]

Liu, J. X.; Zhang, Y. H. Soft network materials with isotropic negative Poisson’s ratios over large strains. Soft Matter 2018, 14, 693–703.

[157]

Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B. K.; Kim, J. H.; Ahn, J. H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019, 62, 259–267.

[158]

Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J. S.; Shin, J.; Choi, C.; Kang, J. H.; Suh, J. M. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 2021, 7, eabg8459.

[159]

Montini-Ballarin, F.; Calvo, D.; Caracciolo, P. C.; Rojo, F.; Frontini, P. M.; Abraham, G. A.; V. Guinea, G. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. J. Mech. Behav. Biomed. Mater. 2016, 60, 220–233.

[160]

Xu, B.; Rollo, B.; Stamp, L. A.; Zhang, D. C.; Fang, X. Y.; Newgreen, D. F.; Chen, Q. Z. Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Biomaterials 2013, 34, 6306–6317.

[161]

Xu, B.; Li, Y.; Fang, X. Y.; Thouas, G. A.; Cook, W. D.; Newgreen, D. F.; Chen, Q. Z. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. J. Mech. Behav. Biomed. Mater. 2013, 28, 354–365.

[162]

Timnak, A.; Gerstenhaber, J. A.; Dong, K.; Har-El, Y. E.; Lelkes, P. I. Gradient porous fibrous scaffolds: A novel approach to improving cell penetration in electrospun scaffolds. Biomed. Mater. 2018, 13, 065010.

[163]

Xu, B.; Li, Y.; Zhu, C. H.; Cook, W. D.; Forsythe, J.; Chen, Q. Z. Fabrication, mechanical properties, and cytocompatibility of elastomeric nanofibrous mats of poly(glycerol sebacate). Eur. Polym. J. 2015, 64, 79–92.

[164]

Le Ferrand, H.; Bolisetty, S.; Demirörs, A. F.; Libanori, R.; Studart, A. R.; Mezzenga, R. Magnetic assembly of transparent and conducting graphene-based functional composites. Nat. Commun. 2016, 7, 12078.

[165]

Gao, C.; Zhang, S. M.; Wang, F.; Wen, B.; Han, C. C.; Ding, Y. F.; Yang, M. S. Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 2014, 6, 12252–12260.

[166]

Zhang, C. F. J.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

[167]

Han, J.; Lee, J. Y.; Lee, J.; Yeo, J. S. Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater. 2018, 30, 1704626.

[168]

An, C. J.; Jang, S.; Kang, K. M.; Kim, S. J.; Jin, M. L.; Jung, H. T. A combined graphene and periodic Au nanograte structure: Fundamentals and application as a flexible transparent conducting film in a flexible organic photovoltaic cell. Carbon 2016, 103, 488–496.

[169]

Qin, Y.; Mo, J. L.; Liu, Y. H.; Zhang, S.; Wang, J. L.; Fu, Q.; Wang, S. F.; Nie, S. X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 2022, 32, 2201846.

[170]

Ma, Z. H.; Wang, W.; Yu, D. Flexible textile-based self-driven sensor used for human motion monitoring. Energy Technol. 2020, 8, 2000164.

[171]

Cao, W. T.; Ouyang, H.; Xin, W.; Chao, S. Y.; Ma, C.; Li, Z.; Chen, F.; Ma, M. G. A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 2020, 30, 2004181.

[172]

Hu, S. M.; Han, J.; Shi, Z. J.; Chen, K.; Xu, N.; Wang, Y. F.; Zheng, R. Z.; Tao, Y. Z.; Sun, Q. J.; Wang, Z. L. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nanomicro Lett. 2022, 14, 115.

[173]

Kim, M.; Wu, Y. S.; Kan, E. C.; Fan, J. T. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers (Basel) 2018, 10, 745.

[174]

Li, M. F.; Chang, K. Q.; Zhong, W. B.; Xiang, C. X.; Wang, W.; Liu, Q. Z.; Liu, K.; Wang, Y. D.; Lu, Z. T.; Wang, D. A highly stretchable, breathable, and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 2019, 486, 249–256.

[175]

Huttunen, O. H.; Behfar, M. H.; Hiitola-Keinänen, J.; Hiltunen, J. Electronic tattoo with transferable printed electrodes and interconnects for wireless electrophysiology monitoring. Adv. Mater. Technol. 2022, 7, 2101496.

[176]

Kim, Y.; Suh, J. M.; Shin, J.; Liu, Y. P.; Yeon, H.; Qiao, K.; Kum, H. S.; Kim, C.; Lee, H. E.; Choi, C. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022, 377, 859–864.

[177]

Liu, X. C.; Huang, Z. P.; Ye, C. Q.; Luo, Z. W.; Chen, L.; Yao, X. Y.; Liang, F.; Yang, T.; Bi, H. C.; Wang, C. L. et al. Graphene-based hydrogel strain sensors with excellent breathability for motion detection and communication. Macro Mater. Eng. 2022, 307, 2200001.

[178]

Wang, W. Q.; Nayeem, M. O. G.; Wang, H. Y.; Wang, C. Y.; Kim, J. J.; Wang, B. H.; Lee, S.; Yokota, T.; Someya, T. Gas-permeable highly sensitive nanomesh humidity sensor for continuous measurement of skin humidity. Adv. Mater. Technol. 2022, 7, 2200479.

[179]

Li, Z. L.; Zhu, M. M.; Qiu, Q.; Yu, J. Y.; Ding, B. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 2018, 53, 726–733.

[180]

Shen, J. L.; Li, Z. L.; Yu, J. Y.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288.

[181]

Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

[182]

Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. The polar hydrophobicity of fluorinated compounds. ChemBioChem 2004, 5, 622–627.

[183]

Singh, H. H.; Khare, N. Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy 2019, 178, 765–771.

[184]

Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 2002, 18, 5818–5822.

[185]

Nie, S. X.; Fu, Q.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Wang, S. F. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512.

[186]

Wang, J. X.; He, J. M.; Ma, L. L.; Zhang, Y.; Shen, L. H.; Xiong, S. X.; Li, K. S.; Qu, M. N. Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity, and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem. Eng. J. 2020, 390, 124508.

[187]

Nie, S. X.; Cai, C. C.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Mo, J. L.; Wang, S. F. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustainable Chem. Eng. 2020, 8, 18678–18685.

[188]

Ahn, J.; Zhao, Z. J.; Choi, J.; Jeong, Y.; Hwang, S.; Ko, J.; Gu, J. M.; Jeon, S.; Park, J.; Kang, M. G. et al. Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy 2021, 85, 105978.

[189]

Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

[190]

Xiong, J. Q.; Luo, H. S.; Gao, D. C.; Zhou, X. R.; Cui, P.; Thangavel, G.; Parida, K.; Lee, P. S. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 2019, 61, 584–593.

[191]

Yeh, C.; Kao, F. C.; Wei, P. H.; Pal, A.; Kaswan, K.; Huang, Y. T.; Parashar, P.; Yeh, H. Y.; Wang, T. W.; Tiwari, N. et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 2022, 104, 107852.

[192]

Wu, H.; Mansouri, J.; Chen, V. Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J. Membr. Sci. 2013, 433, 135–151.

[193]

Andresen, M.; Johansson, L. S.; Tanem, B. S.; Stenius, P. Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 2006, 13, 665–677.

[194]

Ha, J.; Chung, J.; Kim, S.; Kim, J. H.; Shin, S.; Park, J. Y.; Lee, S.; Kim, J. B. Transfer-printable micropatterned fluoropolymer-based triboelectric nanogenerator. Nano Energy 2017, 36, 126–133.

[195]

Xin, B. W.; Hao, J. C. Reversibly switchable wettability. Chem. Soc. Rev. 2010, 39, 769–782.

[196]

Marmur, A. The lotus effect:  Superhydrophobicity and metastability. Langmuir 2004, 20, 3517–3519.

[197]

Nosonovsky, M.; Bhushan, B. Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsyst. Technol. 2006, 12, 231–237.

[198]

Choi, J.; Jo, W.; Lee, S. Y.; Jung, Y. S.; Kim, S. H.; Kim, H. T. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano 2017, 11, 7821–7828.

[199]

Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205.

[200]

Tehrani-Bagha, A. R. Waterproof breathable layers—A review. Adv. Colloid Interface Sci. 2019, 268, 114–135.

[201]

Hwang, I.; Kim, H. N.; Seong, M.; Lee, S. H.; Kang, M. S.; Yi, H.; Bae, W. G.; Kwak, M. K.; Jeong, H. E. Multifunctional smart skin adhesive patches for advanced health care. Adv. Healthcare Mater. 2018, 7, 1800275.

[202]

Dharmasena, R. D. I. G.; Wijayantha, K. G. U. Theoretical and experimental investigation into the asymmetric external charging of triboelectric nanogenerators. Nano Energy 2021, 90, 106511.

[203]

Liu, H.; Feng, Y. W.; Shao, J. J.; Chen, Y.; Wang, Z. L.; Li, H. X.; Chen, X. Y.; Bian, Z. F. Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy 2020, 70, 104499.

[204]

Aazem, I.; Mathew, D. T.; Radhakrishnan, S.; Vijoy, K. V.; John, H.; Mulvihill, D. M.; Pillai, S. C. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv. 2022, 12, 10545–10572.

[205]

Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312.

[206]

He, K.; Liu, Z. Y.; Wan, C. J.; Jiang, Y.; Wang, T.; Wang, M.; Zhang, F. L.; Liu, Y. Q.; Pan, L.; Xiao, M. et al. An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush. Adv. Mater. 2020, 32, 2001130.

[207]

Lu, C. X.; Han, C. B.; Gu, G. Q.; Chen, J.; Yang, Z. W.; Jiang, T.; He, C.; Wang, Z. L. Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275.

[208]

Li, S. M.; Wang, S. H.; Zi, Y. L.; Wen, Z.; Lin, L.; Zhang, G.; Wang, Z. L. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 2015, 9, 7479–7487.

[209]

Lind, S. E. Corrosion of metals by human sweat and its prevention. Corros. Sci. 1972, 12, 749–755.

[210]

Gao, F. P.; Liu, C. X.; Zhang, L. C.; Liu, T. Z.; Wang, Z.; Song, Z. X.; Cai, H. Y.; Fang, Z.; Chen, J. M.; Wang, J. B. et al. Wearable and flexible electrochemical sensors for sweat analysis: A review. Microsyst. Nanoeng. 2023, 9, 1.

[211]

Fonseca, C.; Ochoa, A.; Ulloa, M. T.; Alvarez, E.; Canales, D.; Zapata, P. A. Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater. Sci. Eng. C 2015, 57, 314–320.

[212]

Wang, Y.; Yang, Y. N.; Shi, Y. R.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106.

[213]

Yang, W.; Fortunati, E.; Bertoglio, F.; Owczarek, J. S.; Bruni, G.; Kozanecki, M.; Kenny, J. M.; Torre, L.; Visai, L.; Puglia, D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr. Polym. 2018, 181, 275–284.

[214]

Dey, D.; Dharini, V.; Selvam, S. P.; Sadiku, E. R.; Kumar, M. M.; Jayaramudu, J.; Gupta, U. N. Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Mater. Today Proc. 2021, 38, 860–869.

[215]

Park, D.; Hong, J. H.; Choi, D.; Kim, D.; Jung, W. H.; Yoon, S. S.; Kim, K. H.; An, S. Biocompatible and mechanically-reinforced tribopositive nanofiber mat for wearable and antifungal human kinetic-energy harvester based on wood-derived natural product. Nano Energy 2022, 96, 107091.

[216]

Ren, H. Y.; Zheng, L. M.; Wang, G. R.; Gao, X.; Tan, Z. J.; Shan, J. Y.; Cui, L. Z.; Li, K.; Jian, M. Q.; Zhu, L. et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 2019, 13, 5541–5548.

[217]

He, Z. R.; Yuan, W. Z. Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins. ACS Appl. Mater. Interfaces 2021, 13, 1474–1485.

[218]

Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z. Q.; Ibler, E. M.; Lee, K.; Banks, A.; Jeong, J. Y.; Kim, J. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780.

[219]

Narayanan, D. L.; Saladi, R. N.; Fox, J. L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986.

[220]

Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus 2013, 2, 398.

[221]

Dang, C.; Shao, C. Y.; Liu, H. C.; Chen, Y. A.; Qi, H. S. Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy 2021, 90, 106619.

[222]

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

[223]

Gong, H.; Xu, Z. J.; Yang, Y.; Xu, Q. C.; Li, X. Y.; Cheng, X.; Huang, Y. R.; Zhang, F.; Zhao, J. Z.; Li, S. Y. et al. Transparent, stretchable, and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 2020, 169, 112567.

[224]

Tian, X.; Hua, T. Antibacterial, scalable manufacturing, skin-attachable, and eco-friendly fabric triboelectric nanogenerators for self-powered sensing. ACS Sustainable Chem. Eng. 2021, 9, 13356–13366.

[225]

Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

[226]

Jiang, C. M.; Zhang, Q.; He, C. X.; Zhang, C.; Feng, X. H.; Li, X. J.; Zhao, Q.; Ying, Y. B.; Ping, J. F. Plant-protein-enabled biodegradable triboelectric nanogenerator for sustainable agriculture. Fundam. Res. 2022, 2, 974–984.

[227]

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

[228]

Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

[229]

Gao, Y.; Han, X. Y.; Chen, J. J.; Pan, Y. D.; Yang, M.; Lu, L. H.; Yang, J.; Suo, Z. G.; Lu, T. Q. Hydrogel-mesh composite for wound closure. Proc. Natl. Acad. Sci. USA 2021, 118, e2103457118.

[230]

Chen, A. H.; Zhang, C.; Zhu, G.; Wang, Z. L. Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 2020, 7, 2000186.

[231]

Brenckle, M. A.; Tao, H.; Kim, S.; Paquette, M.; Kaplan, D. L.; Omenetto, F. G. Protein–protein nanoimprinting of silk fibroin films. Adv. Mater. 2013, 25, 2409–2414.

[232]

Liu, J. P.; Zhang, B.; Zhang, P.; Zhao, K. Q.; Lu, Z.; Wei, H. Q.; Zheng, Z. J.; Yang, R. S.; Yu, Y. Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 2022, 16, 17998–18008.

[233]

Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500.

[234]

Peng, X.; Dong, K.; Wu, Z. Y.; Wang, J.; Wang, Z. L. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J. Mater. Sci. 2021, 56, 16765–16789.

[235]

Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.

[236]

Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

[237]

Lee, J. W.; Cho, H. J.; Chun, J.; Kim, K. N.; Kim, S.; Ahn, C. W.; Kim, I. W.; Kim, J. Y.; Kim, S. W.; Yang, C. et al. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Sci. Adv. 2017, 3, e1602902.

[238]

Sun, J. Z.; Choi, H.; Cha, S.; Ahn, D.; Choi, M.; Park, S.; Cho, Y.; Lee, J.; Park, T. E.; Park, J. J. Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system. Adv. Funct. Mater. 2022, 32, 2109139.

[239]

Wang, R. X.; Gao, S. J.; Yang, Z.; Li, Y. L.; Chen, W. N.; Wu, B. X.; Wu, W. Z. Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv. Mater. 2018, 30, 1706267.

[240]

Kim, J. N.; Lee, J.; Go, T. W.; Rajabi-Abhari, A.; Mahato, M.; Park, J. Y.; Lee, H.; Oh, I. K. Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 2020, 75, 104904.

[241]

Bonardd, S.; Robles, E.; Barandiaran, I.; Saldías, C.; Leiva, Á.; Kortaberria, G. Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydr. Polym. 2018, 199, 20–30.

[242]

Pongampai, S.; Charoonsuk, T.; Pinpru, N.; Pulphol, P.; Vittayakorn, W.; Pakawanit, P.; Vittayakorn, N. Triboelectric-piezoelectric hybrid nanogenerator based on BaTiO3-nanorods/chitosan enhanced output performance with self-charge-pumping system. Compos. Part B Eng. 2021, 208, 108602.

[243]

Charoonsuk, T.; Supansomboon, S.; Pakawanit, P.; Vittayakorn, W.; Pongampai, S.; Woramongkolchai, S.; Vittayakorn, N. Simple enhanced charge density of chitosan film by the embedded ion method for the flexible triboelectric nanogenerator. Carbohydr. Polym. 2022, 297, 120070.

[244]

Li, Y. Y.; Wei, C. H.; Jiang, Y.; Cheng, R. W.; Zhang, Y. H.; Ning, C.; Dong, K.; Wang, Z. L. Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications. Adv. Fiber Mater. 2022, 4, 1584–1594.

[245]

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties, and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941.

[246]

Boonchai, N.; Mongkolthanaruk, W.; Harnchana, V.; Faungnawakij, K. Chemical functionalization of bacterial cellulose film for enhancing output performance of bio-triboelectric nanogenerator. Biointerface Res. Appl. Chem. 2022, 12, 1587–1600.

[247]

Yang, M. Y.; Tian, X.; Hua, T. Green and recyclable cellulose based TENG for sustainable energy and human–machine interactive system. Chem. Eng. J. 2022, 442, 136150.

[248]

Zhang, S.; Zhu, Q. X.; Wang, T. T.; Wang, X. C.; Sun, X. P.; Wei, Y. H.; Luo, L. X. Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 2022, 29, 3195–3208.

[249]

Wu, S. H.; Li, G.; Liu, W. X.; Yu, D. H.; Li, G. D.; Liu, X. N.; Song, Z. P.; Wang, H. L.; Liu, H. Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 2022, 93, 106859.

[250]

Shi, K. M.; Zou, H. Y.; Sun, B.; Jiang, P. K.; He, J. L.; Huang, X. Y. Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 2020, 30, 1904536.

[251]

Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Pakawanit, P.; Rojviriya, C.; Vittayakorn, N. Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators. Adv. Mater. Technol. 2020, 5, 2000001.

[252]

Yang, W.; Chen, H. M.; Wu, M. Q.; Sun, Z. Y.; Gao, M.; Li, W. J.; Li, C. Y.; Yu, H. L.; Zhang, C.; Xu, Y. et al. A flexible triboelectric nanogenerator based on cellulose-reinforced MXene composite film. Adv. Mater. Interfaces 2022, 9, 2102124.

[253]

Wang, R.; Ma, J. M.; Ma, S.; Zhang, Q. R.; Li, N.; Ji, M. M.; Jiao, T. F.; Cao, X. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 2022, 450, 137985.

[254]

Xu, S. H.; Zhao, H. Q.; Li, Q.; Zhang, R. Y.; Gao, S.; Wang, F.; Li, G. L.; Chen, B. L.; Yu, H. P.; Liu, S. X. et al. Multi-dimensional, transparent, and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy 2022, 98, 107307.

[255]

Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 2014, 85, 78–96.

[256]

Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev. 2016, 116, 2275–2306.

[257]

Torres, L. A. Z.; Woiciechowski, A. L.; De Andrade Tanobe, V. O.; Karp, S. G.; Lorenci, L. C. G.; Faulds, C.; Soccol, C. R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499.

[258]

Wang, Q. H.; Guo, J. J.; Lu, X. M.; Ma, X. J.; Cao, S. L.; Pan, X. F.; Ni, Y. H. Wearable lignin-based hydrogel electronics: A mini-review. Int. J. Biol. Macromol. 2021, 181, 45–50.

[259]

Bao, Y. K.; Wang, R. X.; Lu, Y. M.; Wu, W. Z. Lignin biopolymer based triboelectric nanogenerators. APL Mater. 2017, 5, 074109.

[260]

Gong, X. Y.; Meng, Y.; Lu, J.; Tao, Y. H.; Cheng, Y.; Wang, H. S. A review on lignin-based phenolic resin adhesive. Macromol. Chem. Phys. 2022, 223, 2100434.

[261]

Melro, E.; Alves, L.; Antunes, F. E.; Medronho, B. A brief overview on lignin dissolution. J. Mol. Liq. 2018, 265, 578–584.

[262]

Wang, J. Y.; Li, Y.; Qiu, X. Q.; Liu, D.; Yang, D. J.; Liu, W. F.; Qian, Y. Dissolution of lignin in green urea aqueous solution. Appl. Surf. Sci. 2017, 425, 736–741.

[263]

Melro, E.; Filipe, A.; Sousa, D.; Valente, A. J. M.; Romano, A.; Antunes, F. E.; Medronho, B. Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 2020, 148, 688–695.

[264]

Zhao, G. F.; Ni, H. Y.; Ren, S. X.; Fang, G. Z. Correlation between solubility parameters and properties of alkali lignin/PVA composites. Polymers (Basel) 2018, 10, 290.

[265]

Xu, S. J.; Wu, W. Z. Ink-based additive nanomanufacturing of functional materials for human-integrated smart wearables. Adv. Intell. Syst. 2020, 2, 2000117.

[266]

Yu, Z. H.; Wang, Y. M.; Zheng, J. Q.; Xiang, Y.; Zhao, P.; Cui, J. Q.; Zhou, H. M.; Li, D. Q. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy 2020, 68, 104382.

[267]

Wang, J. Y.; Chen, Y. L.; Xu, Y. L.; Mu, J. H.; Li, J. Y.; Nie, S. X.; Chen, S.; Xu, F. Sustainable lignin-based electrospun nanofibers for enhanced triboelectric nanogenerators. Sustain. Energy Fuels 2022, 6, 1974–1982.

[268]

Edberg, J.; Mulla, M. Y.; Hosseinaei, O.; Alvi, N. U. H.; Beni, V. A forest-based triboelectric energy harvester. Global Chall. 2022, 6, 2200058.

[269]

Sun, D.; Feng, Y. F.; Sun, S. C.; Yu, J.; Jia, S. Y.; Dang, C.; Hao, X.; Yang, J.; Ren, W. F.; Sun, R. C. et al. Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2201335.

[270]

Badawy, I. M.; Ali, B. A.; Abbas, W. A.; Allam, N. K. Natural silk for energy and sensing applications: A review. Environ. Chem. Lett. 2021, 19, 2141–2155.

[271]

Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008.

[272]

Wen, D. L.; Sun, D. H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M. D.; Kim, B.; Brugger, J.; Zhang, H. X. et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 2021, 7, 35.

[273]

Zhang, Y. J.; Zhou, Z. T.; Sun, L.; Liu, Z.; Xia, X. X.; Tao, T. H. “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv. Mater. 2018, 30, 1805722.

[274]

Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.

[275]

Liu, C. R.; Li, J. Q.; Che, L. F.; Chen, S. Q.; Wang, Z. K.; Zhou, X. F. Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy 2017, 41, 359–366.

[276]

Costa, C. M.; Reizabal, A.; i Serra, R. S.; Balado, A. A.; Pérez-Álvarez, L.; Ribelles, J. L. G.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Broadband dielectric response of silk Fibroin/BaTiO3 composites: Influence of nanoparticle size and concentration. Compos. Sci. Technol. 2021, 213, 108927.

[277]

Reizabal, A.; Gonçalves, S.; Brito-Pereira, R.; Costa, P.; Costa, C. M.; Pérez-Álvarez, L.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. Nanoscale Adv. 2019, 1, 2284–2292.

[278]

Niu, Q. Q.; Huang, L.; Lv, S. S.; Shao, H. L.; Fan, S. N.; Zhang, Y. P. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy 2020, 74, 104837.

[279]

Li, S. Y.; Liu, G. Q.; Wen, H.; Liu, G. Y.; Wang, H.; Ye, M. D.; Yang, Y.; Guo, W. X.; Liu, Y. F. A skin-like pressure- and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv. Funct. Mater. 2022, 32, 2111747.

[280]

Dong, X. Y.; Liu, Q.; Liu, S.; Wu, R. H.; Ma, L. Y. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 2022, 4, 885–893.

[281]

Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011, 6, 1612–1631.

[282]

Huang, T.; Zhang, Y. J.; He, P.; Wang, G.; Xia, X. X.; Ding, G. Q.; Tao, T. H. “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk. Adv. Mater. 2020, 32, 1907336.

[283]

Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; McAlpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067–1072.

[284]

Zhang, Y. J.; Zhou, Z. T.; Fan, Z.; Zhang, S. Q.; Zheng, F. M.; Liu, K. Y.; Zhang, Y. L.; Shi, Z. F.; Chen, L.; Li, X. X. et al. Self-powered multifunctional transient bioelectronics. Small 2018, 14, 1802050.

[285]

Wang, X. C.; Bai, Z. X.; Zheng, M. H.; Yue, O. Y.; Hou, M. D.; Cui, B. Q.; Su, R. R.; Wei, C.; Liu, X. H. Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: Fundamentals and recent advances. J. Sci. Adv. Mater. Dev. 2022, 7, 100451.

[286]

Liu, D. S.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J. M. Collagen and gelatin. Ann. Rev. Food Sci. Technol. 2015, 6, 527–557.

[287]

Tabata, Y.; Ikada, Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 1998, 31, 287–301.

[288]

Ghosh, S. K.; Kim, M. P.; Na, S.; Lee, Y.; Park, J.; Cho, S.; Cho, J.; Kim, J. J.; Ko, H. Ultra-stretchable yet tough, healable, and biodegradable triboelectric devices with microstructured and ionically crosslinked biogel. Nano Energy 2022, 100, 107438.

[289]

Gan, T. S.; Xiao, Q.; Handschuh-Wang, S.; Huang, X. Q.; Wang, H. F.; Deng, X. B.; Hu, S. Y.; Wang, B.; Wu, Q. X.; Zhou, X. C. Conformally adhesive, large-area, solidlike, yet transient liquid metal thin films and patterns via gelatin-regulated droplet deposition and sintering. ACS Appl. Mater. Interfaces 2022, 14, 42744–42756.

[290]

Sun, Q. Z.; Wang, L.; Yue, X. P.; Zhang, L. R.; Ren, G. Z.; Li, D. H.; Wang, H. C.; Han, Y. J.; Xiao, L. L.; Lu, G. et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human–machine interaction. Nano Energy 2021, 89, 106329.

[291]

Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

[292]

Sun, J. G.; Tu, K. K.; Büchele, S.; Koch, S. M.; Ding, Y.; Ramakrishna, S. N.; Stucki, S.; Guo, H. Y.; Wu, C. S.; Keplinger, T. et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 2021, 4, 3049–3066.

[293]

Jie, Y.; Jia, X. T.; Zou, J. D.; Chen, Y. D.; Wang, N.; Wang, Z. L.; Cao, X. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 2018, 8, 1703133.

[294]

Singh, S. K.; Kumar, P.; Magdum, R.; Khandelwal, U.; Deswal, S.; More, Y.; Muduli, S.; Boomishankar, R.; Pandit, S.; Ogale, S. Seed power: Natural seed and electrospun poly(vinyl difluoride) (PVDF) nanofiber based triboelectric nanogenerators with high output power density. ACS Appl. Bio Mater. 2019, 2, 3164–3170.

[295]

Saqib, Q. M.; Shaukat, R. A.; Khan, M. U.; Chougale, M.; Bae, J. Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies. ACS Appl. Electron. Mater. 2020, 2, 3953–3963.

[296]

Feng, Y. G.; Zhang, L. Q.; Zheng, Y. B.; Wang, D. A.; Zhou, F.; Liu, W. M. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260–268.

[297]

Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.

[298]

Yang, J.; An, J.; Sun, Y. S.; Zhang, J. J.; Zu, L. L.; Li, H.; Jiang, T.; Chen, B. D.; Wang, Z. L. Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human–machine interaction in nursing and patient safety. Nano Energy 2022, 97, 107199.

[299]

Ryu, H.; Lee, J. H.; Kim, T. Y.; Khan, U.; Lee, J. H.; Kwak, S. S.; Yoon, H. J.; Kim, S. W. High-performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions. Adv. Energy Mater. 2017, 7, 1700289.

[300]

Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Progr. Polym. Sci. 2003, 28, 963–1014.

[301]

Morales-Hurtado, M.; Zeng, X.; Gonzalez-Rodriguez, P.; Ten Elshof, J. E.; van der Heide, E. A new water absorbable mechanical epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel. J. Mech. Behav. Biomed. Mater. 2015, 46, 305–317.

[302]

Durukan, M. B.; Cicek, M. O.; Doganay, D.; Gorur, M. C.; Çınar, S.; Unalan, H. E. Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors. Adv. Funct. Mater. 2022, 32, 2106066.

[303]

Li, Y.; Xiao, S.; Luo, Y.; Tian, S. S.; Tang, J.; Zhang, X. X.; Xiong, J. Q. Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy 2022, 104, 107884.

[304]

Li, X. J.; Jiang, C. M.; Ying, Y. B.; Ping, J. F. Biotriboelectric nanogenerators: Materials, structures, and applications. Adv. Energy Mater. 2020, 10, 2002001.

[305]

Somkuwar, V. U.; Pragya, A.; Kumar, B. Structurally engineered textile-based triboelectric nanogenerator for energy harvesting application. J. Mater. Sci. 2020, 55, 5177–5189.

[306]

Mallineni, S. S. K.; Dong, Y. C.; Behlow, H.; Rao, A. M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2018, 8, 1702736.

[307]

Gai, Y. S.; Wang, E. G.; Liu, M. H.; Xie, L. R.; Bai, Y.; Yang, Y.; Xue, J. T.; Qu, X. C.; Xi, Y.; Li, L. L. et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 2022, 6, 2200653.

[308]

Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human–machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

[309]

Bang, J.; Moon, I. K.; Jeon, Y. P.; Ki, B.; Oh, J. Fully wood-based green triboelectric nanogenerators. Appl. Surf. Sci. 2021, 567, 150806.

[310]

Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

[311]

Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

[312]

Shen, S.; Xiao, X.; Yin, J. Y.; Xiao, X.; Chen, J. Self-powered smart gloves based on triboelectric nanogenerators. Small Methods 2022, 6, 2200830.

[313]

Tan, P. C.; Han, X.; Zou, Y.; Qu, X. C.; Xue, J. T.; Li, T.; Wang, Y. Q.; Luo, R. Z.; Cui, X.; Xi, Y. et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 2022, 34, 2200793.

[314]

Escobedo, P.; Fernández-Ramos, M. D.; López-Ruiz, N.; Moyano-Rodríguez, O.; Martínez-Olmos, A.; De Vargas-Sansalvador, I. M. P.; Carvajal, M. A.; Capitán-Vallvey, L. F.; Palma, A. J. Smart facemask for wireless CO2 monitoring. Nat. Commun. 2022, 13, 72.

[315]

Zhang, H. B.; Chiao, M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 2015, 35, 143–155.

[316]

Wolf, M. P.; Salieb-Beugelaar, G. B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Progr. Polym. Sci. 2018, 83, 97–134.

[317]

Constantin, C. P.; Aflori, M.; Damian, R. F.; Rusu, R. D. Biocompatibility of polyimides: A mini-review. Materials (Basel) 2019, 12, 3166.

[318]

Richardson, R. R.; Miller, J. A.; Reichert, W. M. Polyimides as biomaterials: Preliminary biocompatibility testing. Biomaterials 1993, 14, 627–635.

[319]

Sun, Y.; Lacour, S. P.; Brooks, R. A.; Rushton, N.; Fawcett, J.; Cameron, R. E. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. Part A 2009, 90, 648–655.

[320]

Kim, J. H.; Marcus, C.; Ono, R.; Sadat, D.; Mirzazadeh, A.; Jens, M.; Fernandez, S.; Zheng, S. Q.; Durak, T.; Dagdeviren, C. A conformable sensory face mask for decoding biological and environmental signals. Nat. Electron. 2022, 5, 794–807.

[321]

Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

[322]

Chang, J. Y.; Meng, H.; Li, C. S.; Gao, J. M.; Chen, S. Q.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087.

[323]

Manjakkal, L.; Yin, L.; Nathan, A.; Wang, J.; Dahiya, R. Energy autonomous sweat-based wearable systems. Adv. Mater. 2021, 33, 2100899.

[324]

Jiang, Y.; Zhang, Y. F.; Ning, C.; Ji, Q. Q.; Peng, X.; Dong, K.; Wang, Z. L. Ultrathin eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learning. Small 2022, 18, 2106960.

[325]

Wei, Z. T.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Du, G. L.; Zhu, S. Q. Y.; Nie, S. X. Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 2022, 32, 2208277.

[326]

Alagumalai, A.; Shou, W.; Mahian, O.; Aghbashlo, M.; Tabatabaei, M.; Wongwises, S.; Liu, Y.; Zhan, J.; Torralba, A.; Chen, J. et al. Self-powered sensing systems with learning capability. Joule 2022, 6, 1475–1500.

[327]

Liu, J. R.; Chen, J. F.; Dai, F. K.; Zhao, J. Z.; Li, S. Y.; Shi, Y. T.; Li, W. J.; Geng, L. Y.; Ye, M. D.; Chen, X. P. et al. Wearable five-finger keyboardless input system based on silk fibroin electronic skin. Nano Energy 2022, 103, 107764.

[328]

Chen, G. R.; Fang, Y. S.; Zhao, X.; Tat, T.; Chen, J. Textiles for learning tactile interactions. Nat. Electron. 2021, 4, 175–176.

[329]

Huo, Z. H.; Peng, Y. Y.; Zhang, Y. F.; Gao, G. Y.; Wan, B. S.; Wu, W. Q.; Yang, Z.; Wang, X. D.; Pan, C. F. Recent advances in large-scale tactile sensor arrays based on a transistor matrix. Adv. Mater. Interfaces 2018, 5, 1801061.

[330]

Li, G. Z.; Liu, S. Q.; Wang, L. Q.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134.

[331]

Gogurla, N.; Kim, S. Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces. Adv. Energy Mater. 2021, 11, 2100801.

[332]

Zhang, J. T.; Hu, S. M.; Shi, Z. J.; Wang, Y. F.; Lei, Y. Q.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q. J. et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021, 89, 106354.

[333]

Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

[334]

Lu, Y. J.; Tian, H.; Cheng, J.; Zhu, F.; Liu, B.; Wei, S. S.; Ji, L. H.; Wang, Z. L. Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 2022, 13, 1401.

[335]

Kim, J. N.; Lee, J.; Lee, H.; Oh, I. K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 2021, 82, 105705.

[336]

Zhang, H. Y.; Yin, F. F.; Shang, S.; Li, Y.; Qiu, Z. C.; Lin, Q. H.; Wei, X.; Li, S. L.; Kim, N. Y.; Shen, G. Z. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy 2022, 102, 107687.

[337]

Sun, J. G.; Yang, T. N.; Wang, C. Y.; Chen, L. J. A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 2018, 48, 383–390.

[338]

Wu, R. H.; Ma, L. Y.; Patil, A.; Meng, Z. H.; Liu, S.; Hou, C.; Zhang, Y. F.; Yu, W. D.; Guo, W. X.; Liu, X. Y. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 2020, 8, 12665–12673.

[339]

Fu, Q.; Liu, Y. H.; Liu, T.; Mo, J. L.; Zhang, W. L.; Zhang, S.; Luo, B.; Wang, J. L.; Qin, Y.; Wang, S. F. et al. Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 2022, 102, 107739.

[340]

Karmakar, S.; Kumbhakar, P.; Maity, K.; Mandal, D.; Kumbhakar, P. Development of flexible self-charging triboelectric power cell on paper for temperature and weight sensing. Nano Energy 2019, 63, 103831.

[341]

Jing, X.; Feng, P. Y.; Chen, Z.; Xie, Z. H.; Li, H.; Peng, X. F.; Mi, H. Y.; Liu, Y. J. Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors. ACS Sustainable Chem. Eng. 2021, 9, 9209–9220.

[342]

Jao, Y. T.; Yang, P. K.; Chiu, C. M.; Lin, Y. J.; Chen, S. W.; Choi, D.; Lin, Z. H. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy 2018, 50, 513–520.

[343]

He, H. X.; Zeng, H.; Fu, Y. M.; Han, W. X.; Dai, Y. T.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered electronic-skin for real-time perspiration analysis and application in motion state monitoring. J. Mater. Chem. C 2018, 6, 9624–9630.

[344]

Wen, Z.; Chen, J.; Yeh, M. H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

[345]

Su, Y. J.; Yang, T. N.; Zhao, X.; Cai, Z. X.; Chen, G. R.; Yao, M. L.; Chen, K.; Bick, M.; Wang, J. J.; Li, S. D. et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020, 74, 104941.

[346]

Wang, D. Y.; Zhang, D. Z.; Guo, J. Y.; Hu, Y. Q.; Yang, Y.; Sun, T. H.; Zhang, H.; Liu, X. H. Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 2021, 89, 106410.

[347]

Su, Y. J.; Yao, M. L.; Xie, G. Z.; Pan, H.; Yuan, H.; Yang, M.; Tai, H. L.; Du, X. S.; Jiang, Y. D. Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric–photoelectric coupling effect. Appl. Phys. Lett. 2019, 115, 073504.

[348]

Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. W. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

[349]

Wang, D. Y.; Zhang, D. Z.; Yang, Y.; Mi, Q.; Zhang, J. H.; Yu, L. D. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

[350]

Zhang, W. L.; Zhao, J. M.; Cai, C. C.; Qin, Y.; Meng, X. J.; Liu, Y. H.; Nie, S. X. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. (Weinh.) 2022, 9, 2203428.

[351]

Sardana, S.; Kaur, H.; Arora, B.; Aswal, D. K.; Mahajan, A. Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 2022, 7, 312–321.

[352]

Zhao, K.; Gu, G. Q.; Zhang, Y. N.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M. L.; Cheng, G.; Du, Z. L. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905.

[353]

Savage, N. Machines learn to unearth new materials. Nature 2021, 595, S36.

[354]

Zhang, Z. X.; He, T. Y. Y.; Zhu, M. L.; Sun, Z. D.; Shi, Q. F.; Zhu, J. X.; Dong, B. W.; Yuce, M. R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 2020, 4, 29.

[355]

Lee, S.; Kim, J.; Yun, I.; Bae, G. Y.; Kim, D.; Park, S.; Yi, I. M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468.

[356]

Lee, S. H.; Kim, Y. S.; Yeo, M. K.; Mahmood, M.; Zavanelli, N.; Chung, C.; Heo, J. Y.; Kim, Y.; Jung, S. S.; Yeo, W. H. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci. Adv. 2022, 8, eabo5867.

[357]

Jang, J.; Kim, D. W.; Lee, J. H.; Choi, C.; Go, M.; Kim, J. K.; Jeong, U. Triboelectric UV patterning for wearable one-terminal tactile sensor array to perceive dynamic contact motions. Nano Energy 2022, 98, 107320.

[358]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2023
Revised: 21 April 2023
Accepted: 27 April 2023
Published: 01 July 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

W. Z. W. acknowledges the School of Industrial Engineering at Purdue University for the Ravi and Eleanor Talwar Rising Star Professorship.

Return