AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Air to fuel: Direct capture of CO2 from air and in-situ solar-driven conversion into syngas via Nix/NaA nanomaterials

Cheng Tian1Xianglei Liu1,2( )Chenxi Liu1Shaoyang Li1Qiyan Li1Nan Sun1Ke Gao1Zhixing Jiang1Kun Chang3Yimin Xuan1,2
School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing 210016, China
School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

Inspired by the nature’ carbon cycle, we have investigated a dual functional catalytic-sorbent consisting of commercial zeolite NaA and base metal Ni, which can capture CO2 directly from air at ambient temperature and convert greenhouse gases CO2 and CH4 into valuable syngas by collecting and utilizing clean solar.

Abstract

Ever-increasing CO2 emissions and atmospheric concentration mainly due to the burning of traditional fossil fuels have caused severe global warming and climate change problems. Inspired by nature’s carbon cycle, we propose a novel dual functional catalyst-sorbent to tackle energy and environmental problems simultaneously via direct capture of CO2 from air and in-situ solar-driven conversion into clean fuels. Economically and operationally advantageous, the planned coupling reaction can be carried out in a single reactor without the requirement for an extra trapping device. The great CO2 capture and conversion performance in an integrated step is shown by the CO2 capacity of up to 0.38 mmol·g−1 for adsorption from 500 ppm CO2 at 25 °C and the CO2 conversion rate of up to 95%. Importantly, the catalyst-sorbent is constituted of a nonprecious metal Ni catalyst and an inexpensive commercially available CO2 sorbent, viz, zeolite NaA. Furthermore, this designed dual functional material also exhibits outstanding stability performance. This work offers a novel pathway of capturing CO2 in the air at room temperature and converting it by CH4 into fuel, contributing to the new era of carbon neutrality.

Electronic Supplementary Material

Download File(s)
12274_2023_5782_MOESM1_ESM.pdf (4.6 MB)

References

[1]

Basu, S.; Miller, J. B.; Lehman, S. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations. Atmos. Chem. Phys. 2016, 16, 5665–5683.

[2]

Andres, R. J.; Boden, T. A.; Bréon, F. M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J. S.; Jacobson, A.; Marland, G.; Miller, J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 2012, 9, 1845–1871.

[3]

Tian, C.; Li, C. C.; Chen, D. L.; Li, Y. F.; Xing, L.; Tian, X. L.; Cao, Y.; Huang, W.; Liu, Z. X.; Shen, Y. J. Sandwich hydrogel with confined plasmonic Cu/carbon cells for efficient solar water purification. J. Mater. Chem. A 2021, 9, 15462–15471.

[4]

Tian, C.; Liu, J.; Ruan, R. F.; Tian, X. L.; Lai, X. Y.; Xing, L.; Su, Y. Q.; Huang, W.; Cao, Y.; Tu, J. C. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 2020, 16, 2000573.

[5]

Chen, Y. H.; Qi, M. Y.; Li, Y. H.; Tang, Z. R.; Wang, T.; Gong, J. L.; Xu, Y. J. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Rep. Phys. Sci. 2021, 2, 100371.

[6]

Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C–N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 60, 7962–7970.

[7]

Lu, K. Q.; Li, Y. H.; Zhang, F.; Qi, M. Y.; Chen, X.; Tang, Z. R.; Yamada, Y. M. A.; Anpo, M.; Conte, M.; Xu, Y. J. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 2020, 11, 5181.

[8]

Yuan, L.; Xu, Y. J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.

[9]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118380.

[10]

Zheng, Q. H.; Farrauto, R.; Nguyen, A. C. Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: A parametric study. Ind. Eng. Chem. Res. 2016, 55, 6768–6776.

[11]

Kim, S. M.; Abdala, P. M.; Broda, M.; Hosseini, D.; Copéret, C.; Müller, C. Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal. 2018, 8, 2815–2823.

[12]

Kosaka, F.; Sasayama, T.; Liu, Y. Y.; Chen, S. Y.; Mochizuki, T.; Matsuoka, K.; Urakawa, A.; Kuramoto, K. Direct and continuous conversion of flue gas CO2 into green fuels using dual function materials in a circulating fluidized bed system. Chem. Eng. J. 2022, 450, 138055.

[13]

Kothandaraman, J.; Lopez, J. S.; Jiang, Y.; Walter, E. D.; Burton, S. D.; Dagle, R. A.; Heldebrant, D. J. Integrated capture and conversion of CO2 to methanol in a post-combustion capture solvent: Heterogeneous catalysts for selective C–N bond cleavage. Adv. Energy Mater. 2022, 12, 2202369.

[14]

Liu, L. J.; Zhao, C. Y.; Xu, J. Y.; Li, Y. Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material. Appl. Catal. B Environ. 2015, 179, 489–499.

[15]

Sullivan, I.; Goryachev, A.; Digdaya, I. A.; Li, X. Q.; Atwater, H. A.; Vermaas, D. A.; Xiang, C. X. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2021, 4, 952–958.

[16]

Tian, S. C.; Yan, F.; Zhang, Z. T.; Jiang, J. G. Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency. Sci. Adv. 2019, 5, eaav5077.

[17]

Fang, Z. B.; Liu, T. T.; Liu, J. X.; Jin, S. Y.; Wu, X. P.; Gong, X. Q.; Wang, K. C.; Yin, Q.; Liu, T. F.; Cao, R. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523.

[18]

Jiao, X. C.; Zheng, K.; Chen, Q. X.; Li, X. D.; Li, Y. M.; Shao, W. W.; Xu, J. Q.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew. Chem., Int. Ed. 2020, 59, 15497–15501.

[19]

Ma, Y. J.; Yi, X. X.; Wang, S. L.; Li, T.; Tan, B. E.; Chen, C. C.; Majima, T.; Waclawik, E. R.; Zhu, H. Y.; Wang, J. Y. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.

[20]

Veselovskaya, J. V.; Parunin, P. D.; Netskina, O. V.; Kibis, L. S.; Lysikov, A. I.; Okunev, A. G. Catalytic methanation of carbon dioxide captured from ambient air. Energy 2018, 159, 766–773.

[21]

Hanusch, J. M.; Kerschgens, I. P.; Huber, F.; Neuburger, M.; Gademann, K. Pyrrolizidines for direct air capture and CO2 conversion. Chem. Commun. 2019, 55, 949–952.

[22]

Jeong-Potter, C.; Abdallah, M.; Sanderson, C.; Goldman, M.; Gupta, R.; Farrauto, R. Dual function materials (Ru+Na2O/Al2O3) for direct air capture of CO2 and in situ catalytic methanation: The impact of realistic ambient conditions. Appl. Catal. B Environ. 2022, 307, 120990.

[23]

Koch, C. J.; Galvan, V.; Goeppert, A.; Prakash, G. K. S. Metal hydroxide assisted integrated direct air capture and conversion to methane with Ni/Al2O3 catalysts. Green Chem. 2023, 25, 1803–1808.

[24]

Ye, R. P.; Ding, J.; Gong, W. B.; Argyle, M. D.; Zhong, Q.; Wang, Y. J.; Russell, C. K.; Xu, Z. H.; Russell, A. G.; Li, Q. H. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698.

[25]

Wang, Z. J.; Song, H.; Liu, H. M.; Ye, J. H. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects. Angew. Chem., Int. Ed. 2020, 59, 8016–8035.

[26]

Sun, M. Y.; Zhao, B. H.; Chen, F. P.; Liu, C. B.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.

[27]

Liu, X. L.; Wang, T.; Gao, K.; Meng, X. G.; Xu, Q.; Song, C.; Zhu, Z. H.; Zheng, H. B.; Hao, Y.; Xuan, Y. M. Ca- and Ga-doped LaMnO3 for solar thermochemical CO2 splitting with high fuel yield and cycle stability. ACS Appl. Energy Mater. 2021, 4, 9000–9012.

[28]

Gao, K.; Liu, X. L.; Jiang, Z. X.; Zheng, H. B.; Song, C.; Wang, X. R.; Tian, C.; Dang, C. Z.; Sun, N.; Xuan, Y. M. Direct solar thermochemical CO2 splitting based on Ca- and Al-doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing. Renewable Energy 2022, 194, 482–494.

[29]

Chen, G. X.; Godfroid, T.; Britun, N.; Georgieva, V.; Delplancke-Ogletree, M. P.; Snyders, R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl. Catal. B Environ. 2017, 214, 114–125.

[30]

Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; Jin, R. C. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 2015, 7, 15626–15632.

[31]

Li, J. Y.; Yuan, L.; Li, S. H.; Tang, Z. R.; Xu, Y. J. One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J. Mater. Chem. A 2019, 7, 8676–8689.

[32]

Li, S. H.; Qi, M. Y.; Fan, Y. Y.; Yang, Y.; Anpo, M.; Yamada, Y. M. A.; Tang, Z. R.; Xu, Y. J. Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal. B Environ. 2021, 292, 120157.

[33]

Qi, M. Y.; Lin, Q.; Tang, Z. R.; Xu, Y. J. Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation. Appl. Catal. B Environ. 2022, 307, 121158.

[34]

Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; Xiong, Y. J.; Xu, Y. J. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824–4833.

[35]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

[36]

Liu, X. L.; Shi, H.; Meng, X. G.; Sun, C.; Zhang, K.; Gao, L.; Ma, Y.; Mu, Z. K.; Ling, Y. Y.; Cheng, B. et al. Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%. Sol. RRL 2021, 5, 2100185.

[37]

Han, K. H.; Yu, W. S.; Xu, L. L.; Deng, Z. Y.; Yu, H.; Wang, F. G. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst. Fuel 2021, 291, 120182.

[38]

Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039.

[39]

De, S.; Zhang, J. G.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

[40]

Li, T.; Lu, X. K.; Rabuni, M. F.; Wang, B.; Farandos, N. M.; Kelsall, G. H.; Brett, D. J. L.; Shearing, P. R.; Ouyang, M. Z.; Brandon, N. P. et al. High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy. Energy Environ. Sci. 2020, 13, 1879–1887.

[41]

Verbeeck, K.; Buelens, L. C.; Galvita, V. V.; Marin, G. B.; Van Geem, K. M.; Rabaey, K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 2018, 11, 1788–1802.

[42]

Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal. 2013, 3, 1638–1651.

[43]

Han, K. H.; Wang, Y.; Wang, S.; Liu, Q. Y.; Deng, Z. Y.; Wang, F. G. Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chem. Eng. J. 2021, 421, 129989.

[44]

Buelens, L. C.; Galvita, V. V.; Poelman, H.; Detavernier, C.; Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 2016, 354, 449–452.

[45]

Song, H.; Meng, X. G.; Wang, Z. J.; Liu, H. M.; Ye, J. H. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606–1636.

[46]

Tavasoli, A.; Ozin, G. Green syngas by solar dry reforming. Joule 2018, 2, 571–575.

[47]

Teng, L.; Xuan, Y. M.; Da, Y.; Sun, C.; Liu, X. L.; Ding, Y. L. Direct solar-driven reduction of greenhouse gases into hydrocarbon fuels incorporating thermochemical energy storage via modified calcium looping. Chem. Eng. J. 2022, 440, 135955.

[48]

Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R. Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts. Appl. Catal. B Environ. 2019, 256, 117845.

[49]

Omodolor, I. S.; Otor, H. O.; Andonegui, J. A.; Allen, B. J.; Alba-Rubio, A. C. Dual-function materials for CO2 capture and conversion: A review. Ind. Eng. Chem. Res. 2020, 59, 17612–17631.

[50]

Hu, Y. C.; Guo, Y. F.; Sun, J.; Li, H. L.; Liu, W. Q. Progress in MgO sorbents for cyclic CO2 capture: A comprehensive review. J. Mater. Chem. A 2019, 7, 20103–20120.

[51]

Arellano-Treviño, M. A.; He, Z. Y.; Libby, M. C.; Farrauto, R. J. Catalysts and adsorbents for CO2 capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications. J. CO2 Util. 2019, 31, 143–151.

[52]

Bermejo-López, A.; Pereda-Ayo, B.; Gonzalez-Marcos, J. A.; González-Velasco, J. R. Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3. J. CO2 Util. 2019, 34, 576–587.

[53]

Wang, S. X.; Schrunk, E. T.; Mahajan, H.; Farrauto, A. R. J. The role of ruthenium in CO2 capture and catalytic conversion to fuel by dual function materials (DFM). Catalysts 2017, 7, 88.

[54]

Duyar, M. S.; Wang, S. X.; Arellano-Treviño, M. A.; Farrauto, R. J. CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: An update. J. CO2 Util. 2016, 15, 65–71.

[55]

Shi, H.; Tian, C.; Liu, X. L.; Sun, N.; Song, C.; Zheng, H. B.; Gao, K.; Wang, X. R.; Jiang, Z. X.; Xuan, Y. M. et al. Ni-phyllosilicate nanotubes coated by CeO2 for ultra-efficiency of 36.9% and near-limit CO2 conversion in solar-driven conversion of CO2-to-fuel. Chem. Eng. J. 2023, 454, 140063.

[56]

Wang, P.; Cao, J.; Zhang, Y. J.; Sun, Q. Controllable preparation of cubic zeolite A and application of langmuir model in carbon dioxide adsorption. Nanomaterials 2021, 11, 3375.

[57]

Wang, P.; Sun, Q.; Zhang, Y. J.; Cao, J. Synthesis of zeolite 4A from kaolin and its adsorption equilibrium of carbon dioxide. Materials 2019, 12, 1536.

[58]

Hu, X. Q.; Peng, T. J.; Sun, H. J.; Li, L. Synthesis of zeolite NaA and its thermal stability. Non-Met. Mines 2015, 38, 1–4.

[59]

Wang, P.; Sun, Q.; Zhang, Y. J.; Cao, J.; Li, X. M. Hydrothermal synthesis of Zeolite NaA from Kaolin. Funct. Mater. Lett. 2019, 12, 1950075.

[60]

Akhtar, F.; Liu, Q. L.; Hedin, N.; Bergstrom, L. Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 2012, 5, 7664–7673.

[61]

Qin, C.; Jiang, Y. D.; Zuo, S. Y.; Chen, S. W.; Xiao, S. Y.; Liu, Z. J. Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2. Energy 2021, 236, 121410.

[62]

Singh, V. K.; Kumar, E. A. Measurement of CO2 adsorption kinetics on activated carbons suitable for gas storage systems. Greenhouse Gas. Sci. Technol. 2017, 7, 182–201.

[63]

Wei, M. Q.; Yu, Q. B.; Xie, H. Q.; Zuo, Z. L.; Hou, L. M.; Yang, F. Kinetics studies of CO2 adsorption and desorption on waste ion-exchange resin-based activated carbon. Int. J. Hydrogen Energy 2017, 42, 27122–27129.

[64]

Yan, B. L.; Yu, S.; Zeng, C. F.; Yu, L.; Wang, C. Q.; Zhang, L. X. Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity. Microporous Mesoporous Mater. 2019, 278, 267–274.

[65]
Du, X. D.; Cheng, Y. G.; Liu, Z. J.; Yin, H.; Wu, T. F.; Huo, L.; Shu, C. X. CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss. Fuel 2021, 283, 118886.
[66]

Li, S. J.; Deng, S.; Zhao, R. K.; Zhao, L.; Xu, W. C.; Yuan, X. Z.; Guo, Z. H. Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle. Energy 2019, 179, 876–889.

[67]

Wang, W. L.; Li, J.; Wei, X. L.; Ding, J.; Feng, H. J.; Yan, J. Y.; Yang, J. P. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Appl. Energy 2015, 142, 221–228.

[68]

Fu, D. L.; Park, Y.; Davis, M. E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc. Natl. Acad. Sci. USA 2022, 119, e2211544119.

[69]

Wu, S. W.; Ji, G. R.; Qiu, P.; Hu, Q. Q.; Tian, J.; Li, Y. Z. High fuel yields, solar-to-fuel efficiency, and excellent durability achieved for confined NiCo alloy nanoparticles using MgO overlayers for photothermocatalytic CO2 reduction. Solar Rrl 2022, 6, 2200369.

[70]
Liu, X. L.; Ling, Y. Y.; Sun, C.; Shi, H.; Zheng, H. B.; Song, C.; Gao, K.; Dang, C. Z.; Sun, N.; Xuan, Y. M. et al. Efficient solar-driven CO2-to-fuel conversion via Ni/MgAlOx@SiO2 nanocomposites at low temperature. Fundam. Res., in press, https://doi.org/10.1016/j.fmre.2022.04.011.
[71]

Mu, Z. K.; Liu, X. L.; Shi, H.; Song, C.; Dang, C. Z.; Gao, K.; Sun, N.; Tian, C.; Zheng, H. B.; Wang, X. R. et al. A highly efficient solar-driven CO2 reforming of methane on Ni/MgAlOx-LDH loaded Ni foam reactors with heat recovery: Experimental measurements and numerical simulations. Chem. Eng. J. 2022, 446, 137437.

[72]

Guharoy, U.; Reina, T. R.; Liu, J.; Sun, Q.; Gu, S.; Cai, Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J. CO2 Util. 2021, 53, 101728.

[73]

Li, M. J.; Sun, Z. X.; Hu, Y. H. Catalysts for CO2 reforming of CH4: A review. J. Mater. Chem. A 2021, 9, 12495–12520.

[74]

Zhang, L. Y.; Meng, Y.; Yang, J. M.; Shen, H.; Yang, C. F.; Xie, B.; Xia, S. J. Theoretical study on dry reforming of methane catalyzed by Cu12M (M = Cu, Fe, Co, Ni) core–shell bimetallic clusters. Fuel 2021, 303, 121263.

[75]

Seo, H. O. Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane. Catalysts 2018, 8, 110.

[76]
Alioui, O.; Badawi, M.; Erto, A.; Amin, M. A.; Tirth, V.; Jeon, B. H.; Islam, S.; Balsamo, M.; Virginie, M.; Ernst, B. et al. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: A review. Catal. Rev., in press, https://doi.org/10.1080/01614940.2021.2020518.
[77]

Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M. H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica-ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Appl. Catal. B Environ. 2018, 230, 220–236.

Nano Research
Pages 10899-10912
Cite this article:
Tian C, Liu X, Liu C, et al. Air to fuel: Direct capture of CO2 from air and in-situ solar-driven conversion into syngas via Nix/NaA nanomaterials. Nano Research, 2023, 16(8): 10899-10912. https://doi.org/10.1007/s12274-023-5782-z
Topics:

1220

Views

7

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 24 February 2023
Revised: 15 April 2023
Accepted: 26 April 2023
Published: 15 June 2023
© Tsinghua University Press 2023
Return