Journal Home > Volume 16 , Issue 8

Co3O4 particles are promising heterogeneous catalysts for peroxymonosulfate (PMS) activation; whereas they still surfer from the extensive agglomeration, serious Co leaching, poor electronic conductivity, and difficult recovery. Herein, a novel hybrid nanoarchitectonic constructed by encapsulating Co3O4 nanoparticles into continuous polypyrrole (PPy) nanotubes (Co3O4@PPy hybrids) was developed using electrospun fibers as the templates, which boosted the catalytic degradation toward tetracycline (TC). The continuous polypyrrole nanotubes could provide the confined spaces, offer effective electron transfer pathway, suppress cobalt ion loss, facilitate the oxygen vacancy (Ovac) formation, and accelerate the Co2+/Co3+ cycles. Co3O4@PPy hybrids thereby exhibited a remarkably enhanced catalytic activity with the TC degradation efficiency of 97.2% (kobs = 0.244 min−1) within 20 min and total organic carbon (TOC) removal rate of 66.8%. Furthermore, the recycle test, real natural water treatment, and fluidized-column catalytic experiments indicated the potential of Co3O4@PPy hybrids in the practical large-scale applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Continuous polypyrrole nanotubes encapsulated Co3O4 nanoparticles with oxygen vacancies and electron transport channels boosting peroxymonosulfate activation

Show Author's information Dingyang Chen,§Wanning Wu,§Xinyue ZhaoDanyang Feng( )Rui Zhao( )Guangshan Zhu
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

§ Dingyang Chen and Wanning Wu contributed equally to this work.

Abstract

Co3O4 particles are promising heterogeneous catalysts for peroxymonosulfate (PMS) activation; whereas they still surfer from the extensive agglomeration, serious Co leaching, poor electronic conductivity, and difficult recovery. Herein, a novel hybrid nanoarchitectonic constructed by encapsulating Co3O4 nanoparticles into continuous polypyrrole (PPy) nanotubes (Co3O4@PPy hybrids) was developed using electrospun fibers as the templates, which boosted the catalytic degradation toward tetracycline (TC). The continuous polypyrrole nanotubes could provide the confined spaces, offer effective electron transfer pathway, suppress cobalt ion loss, facilitate the oxygen vacancy (Ovac) formation, and accelerate the Co2+/Co3+ cycles. Co3O4@PPy hybrids thereby exhibited a remarkably enhanced catalytic activity with the TC degradation efficiency of 97.2% (kobs = 0.244 min−1) within 20 min and total organic carbon (TOC) removal rate of 66.8%. Furthermore, the recycle test, real natural water treatment, and fluidized-column catalytic experiments indicated the potential of Co3O4@PPy hybrids in the practical large-scale applications.

Keywords: Co3O4, polypyrrole (PPy) nanotube, peroxymonosulfate (PMS), tetracycline (TC) degradation

References(43)

[1]

Song, C. L.; Zhan, Q.; Liu, F.; Wang, C.; Li, H. C.; Wang, X.; Guo, X. F.; Cheng, Y. C.; Sun, W.; Wang, L. et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202200406.

[2]

Guo, X.; Zhang, H.; Yao, Y. Y.; Xiao, C. M.; Yan, X.; Chen, K.; Qi, J. W.; Zhou, Y. J.; Zhu, Z. G.; Sun, X. Y. et al. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Appl. Catal. B Environ. 2023, 323, 122136.

[3]

Li, Y. H.; Lin, D. Y.; Li, Y. F.; Jiang, P. K.; Fang, X. B.; Yu, B. Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline. Nano Res. 2023, 16, 155–165.

[4]

Nidheesh, P. V.; Divyapriya, G.; Titchou, F. E.; Hamdani, M. Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Sep. Purif. Technol. 2022, 293, 121115.

[5]
Wang, C. H.; Wang, H. Y.; Na, J.; Yao, Y. Y.; Azhar, A.; Yan, X.; Qi, J. W.; Yamauchi, Y.; Li, J. S. 0D-1D hybrid nanoarchitectonics: Tailored design of FeCo@N-C yolk–shell nanoreactors with dual sites for excellent Fenton-like catalysis. Chem. Sci. 2021, 12, 15418–15422.
DOI
[6]

Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.

[7]

Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117.

[8]

Sun, J.; Shen, C. H.; Guo, J.; Guo, H.; Yin, Y. F.; Xu, X. J.; Fei, Z. H.; Liu, Z. T.; Wen, X. J. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2WO6 p-n heterojunction composites for the degradation of ciprofloxacin under visible light irradiation. J. Colloid Interface Sci. 2021, 588, 19–30.

[9]

Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N–Co binding and high tolerance of chloride. Appl. Catal. B Environ. 2021, 282, 119484.

[10]

Li, Q. Q.; Ren, Z. J.; Liu, Y. T.; Zhang, C. B.; Liu, J. D.; Zhou, R.; Bu, Y. Q.; Mao, F. F.; Wu, H. Petal-like hierarchical Co3O4/N-doped porous carbon derived from Co-MOF for enhanced peroxymonosulfate activation to remove tetracycline hydrochloride. Chem. Eng. J. 2023, 452, 139545.

[11]

Yi, G. X.; Ye, M. P.; Wu, J.; Wang, Y.; Long, Y.; Fan, G. Y. Facile chemical blowing synthesis of interconnected N-doped carbon nanosheets coupled with Co3O4 nanoparticles as superior peroxymonosulfate activators for p-nitrophenol destruction: Mechanisms and degradation pathways. Appl. Surf. Sci. 2022, 593, 153244.

[12]

Ramasamy, B.; Pratihary, N.; Sekar, K.; Das, T. Cobalt promoted bifunctional graphene composite (Co@pGSC) for heterogeneous peroxymonosulfate activation. Chem. Eng. J. 2020, 399, 125752.

[13]

Zhao, Y.; Zhan, X. H.; Sun, Y. P.; Wang, H.; Chen, L.; Liu, J. Y.; Shi, H. X. MnOx@N-doped carbon nanosheets derived from Mn-MOFs and g-C3N4 for peroxymonosulfate activation: Electron-rich Mn center induced by N doping. Chemosphere 2023, 310, 136937.

[14]

Xie, Y. B.; Liu, Y.; Yao, Y. J.; Shi, Y. C.; Zhao, B. R.; Wang, Y. X. In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants. Chin. Chem. Lett. 2022, 33, 1298–1302.

[15]

Li, Y.; Zhou, X.; Sarkar, B.; Gagnon-Lafrenais, N.; Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 2022, 34, 2108932.

[16]

El Fakir, A. A.; Anfar, Z.; Amedlous, A.; Zbair, M.; Hafidi, Z.; El Achouri, M.; Jada, A.; El Alem, N. Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation. Appl. Catal. B Environ. 2021, 286, 119948.

[17]

El Fakir, A. A.; Anfar, Z.; Amedlous, A.; Amjlef, A.; Farsad, S.; Jada, A.; El Alem, N. Synergistic effect for efficient catalytic persulfate activation in conducting polymers-hematite sand composites: Enhancement of chemical stability. Appl. Catal. A Gen. 2021, 623, 118246.

[18]

Song, N.; Ren, S. Y.; Zhang, Y.; Wang, C.; Lu, X. F. Confinement of Prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Adv. Funct. Mater. 2022, 32, 2204751.

[19]

Zhao, T. T.; Yang, Y.; Deng, X. H.; Ma, S. C.; Wu, M. Q.; Zhang, Y. Q.; Guan, Y. N.; Zhu, Y. F.; Yao, T. J.; Yang, Q. F. et al. Preparation of double-yolk egg-like nanoreactor: Enhanced catalytic activity in Fenton-like reaction and insight on confinement effect. J. Colloid Interface Sci. 2022, 625, 774–784.

[20]

Chen, Y. L.; Bai, X.; Ji, Y. T.; Chen, D. D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies. J. Hazard. Mater. 2023, 441, 129912.

[21]

Xu, C. J.; Tan, J. K.; Zhang, X. D.; Huang, Y. M. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin. Sep. Purif. Technol. 2022, 291, 120933.

[22]

Wang, M. M.; Liu, L. J.; Xi, J. R.; Ding, Y.; Liu, P. X.; Mao, L.; Ni, B. J.; Wang, W. K.; Xu, J. Lattice doping of Zn boosts oxygen vacancies in Co3O4 nanocages: Improving persulfate activation via forming surface-activated complex. Chem. Eng. J. 2023, 451, 138605.

[23]

Wu, Y. D.; Wang, Y.; Zhu, P.; Ye, X.; Liu, R. N.; Cai, W. F. Precisely controllable oxygen vacancy-manufactured Ov-Co3O4@PPy for high energy density supercapacitor. Appl. Surf. Sci. 2022, 606, 154863.

[24]

Liu, Y.; Wang, Y. F.; Meng, Y.; Plamthottam, R.; Tjiu, W. W.; Zhang, C.; Liu, T. X. Ultrathin polypyrrole layers boosting MoO3 as both cathode and anode materials for a 2.0 V high-voltage aqueous supercapacitor. ACS Appl. Mater. Interfaces 2022, 14, 4490–4499.

[25]

Liang, Y.; Li, L. H.; Yang, C. M.; Ma, L.; Mao, W. H.; Yu, H. M. Bimetallic zeolitic imidazolate framework-derived nitrogen-doped porous carbon-coated CoFe2O4 core–shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation. J. Alloys Compd. 2022, 907, 164504.

[26]

Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Sun, H. X.; Yu, N.; Geng, B. Y. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Res. 2022, 15, 6192–6199.

[27]

Dutta, S.; Liu, Z. M.; Han, H. S.; Indra, A.; Song, T. Electrochemical energy conversion and storage with zeolitic imidazolate framework derived materials: A perspective. ChemElectroChem 2018, 5, 3571–3588.

[28]

Chen, D. Y.; Bai, Q.; Ma, T. T.; Jing, X. F.; Tian, Y. Y.; Zhao, R.; Zhu, G. S. Stable metal-organic framework fixing within zeolite beads for effectively static and continuous flow degradation of tetracycline by peroxymonosulfate activation. Chem. Eng. J. 2022, 435, 134916.

[29]

Tang, W. H.; Teng, K. W.; Guo, W. G.; Gu, F.; Li, B. Y.; Qi, R. Y.; Liu, R. P.; Lin, Y. Y.; Wu, M. M.; Chen, Y. H. Defect-engineered Co3O4@nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, 2202194.

[30]

Song, N.; Zhong, M. X.; Xu, J. Q.; Wang, C.; Lu, X. F. Single-atom iron confined within polypyrrole-derived carbon nanotubes with exceptional peroxidase-like activity for total antioxidant capacity. Sens. Actuators B:Chem. 2022, 351, 130969.

[31]

Yang, M.; Zhang, C. H.; Zhao, J. H.; Wang, L.; Li, L. X.; Guo, S. X. Construction of free-standing electrode anchored on polyimide foam with a facile synergistic strategy for enhancing hydrogen peroxide reduction electrocatalysis. J. Alloys Compd. 2022, 891, 161939.

[32]

Wu, J.; Dai, Y.; Pan, Z. J.; Huo, D. X.; Wang, T.; Zhang, H. P.; Hu, J.; Yan, S. Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode. Appl. Surf. Sci. 2020, 510, 145529.

[33]

Song, N.; Zhang, Y.; Ren, S. Y.; Wang, C.; Lu, X. F. Rational design of conducting polymer-derived tubular carbon nanoreactors for enhanced enzyme-like catalysis and total antioxidant capacity bioassay application. Anal. Chem. 2022, 94, 11695–11702.

[34]

Tong, Y. L.; Liu, H. Q.; Dai, M. Z.; Xiao, L.; Wu, X. Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chin. Chem. Lett. 2020, 31, 2295–2299.

[35]

Dong, X. B.; Duan, X. D.; Sun, Z. M.; Zhang, X. W.; Li, C. Q.; Yang, S. S.; Ren, B. X.; Zheng, S. L.; Dionysiou, D. D. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis. Appl. Catal. B Environ. 2020, 261, 118214.

[36]

Chen, X. J.; Liao, W. Y.; Zhong, M. X.; Chen, J. J.; Yan, S.; Li, W. M.; Wang, C.; Chen, W.; Lu, X. F. Rational design of robust iridium-ceria oxide-carbon nanofibers to boost oxygen evolution reaction in both alkaline and acidic media. Nano Res., 2023, 16, 7725–7733.

[37]

Zhang, Y.; Zhang, L. W.; Gong, T. C.; Li, T. H.; Li, X. N.; Feng, J.; Tang, T. F.; Cheng, H. Facile synthesis of Co3O4/C porous polyhedrons for voltammetric determination of quercetin in human serum and urine. J. Appl. Electrochem. 2022, 52, 1607–1616.

[38]

Lei, Y. X.; Guo, X.; Jiang, M. J.; Sun, W.; He, H.; Chen, Y.; Thummavichai, K.; Ola, O.; Zhu, Y. Q.; Wang, N. N. Co-ZIF reinforced cow manure biochar (CMB) as an effective peroxymonosulfate activator for degradation of carbamazepine. Appl. Catal. B Environ. 2022, 319, 121932.

[39]

Zhao, L.; Zhang, H. L.; Dai, Z. P.; Zhang, A. Y.; Yin, J.; Peng, S. C.; Liang, H. Recycling chestnut shell for superior peroxymonosulfate activation in contaminants degradation via the synergistic radical/non-radical mechanisms. J. Hazard. Mater. 2022, 430, 128471.

[40]

Dong, X. B.; Ren, B. X.; Zhang, X. W.; Liu, X. R.; Sun, Z. M.; Li, C. Q.; Tan, Y.; Yang, S. S.; Zheng, S. L.; Dionysiou, D. D. Diatomite supported hierarchical 2D CoNi3O4 nanoribbons as highly efficient peroxymonosulfate catalyst for atrazine degradation. Appl. Catal. B Environ. 2020, 272, 118971.

[41]

Zhao, L. L.; Zhang, J. M.; Zhang, Z. P.; Wei, T.; Wang, J.; Ma, J.; Ren, Y. M.; Zhang, H. X. Co3O4 crystal plane regulation to efficiently activate peroxymonosulfate in water: The role of oxygen vacancies. J. Colloid Interface Sci. 2022, 623, 520–531.

[42]

Dung, N. T.; Thuy, B. M.; Son, L. T.; Ngan, L. V.; Thao, V. D.; Takahashi, M.; Maenosono, S.; Thu, T. V. Mechanistic insights into efficient peroxymonosulfate activation by NiCo layered double hydroxides. Environ. Res. 2023, 217, 114488.

[43]

Li, Y. Y.; Wang, Y.; Liu, L.; Tian, L. C. Non-radical-dominated catalytic degradation of methylene blue by magnetic CoMoO4/CoFe2O4 composite peroxymonosulfate activators. J. Environ. Manage. 2023, 325, 116587.

Video
12274_2023_5781_MOESM1_ESM.mp4
File
12274_2023_5781_MOESM2_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2023
Revised: 02 April 2023
Accepted: 25 April 2023
Published: 13 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB3805900), National Natural Science Foundation of China (Nos. 52003040, 22131004, and 52273055), Natural Science Foundation of Department of Science and Technology of Jilin Province (Nos. YDZJ202101ZYTS060 and 20210201012GX), and the “111” project (No. B18012).

Return