Journal Home > Volume 16 , Issue 8

Understanding and control of many-body collective phenomena such as charge density wave (CDW) and superconductivity in atomically thin crystals remains a hot topic in material science. Here, using first-principles calculations, we find that 1T-HfTe2 possessing no CDWs in the bulk form, unexpectedly shows a stable 2 × 2 CDW order in the monolayer form, which can be attributed to the enhancement of electron–phonon coupling (EPC) in the monolayer. Meanwhile, the CDW induces a metal-to-insulator transition in monolayer 1T-HfTe2 through the accompanying lattice distortion. Remarkably, Ising superconductivity with a significantly enhanced in-plane critical field can emerge in centrosymmetric monolayer 1T-HfTe2 after the CDW is suppressed by electron doping. The Ising paring is revealed to be protected by the spin–orbital locking without the participation of the inversion symmetry breaking which is a must for conventional 2H-NbSe2-like Ising superconductors. Our results open a new window for designing and controlling novel quantum states in two-dimensional (2D) matter.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Emergence of charge density wave and Ising superconductivity in centrosymmetric monolayer 1T-HfTe2

Show Author's information Dawei Wang1,2Jizheng Wu2Chen Si2( )
Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100853, China
School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Understanding and control of many-body collective phenomena such as charge density wave (CDW) and superconductivity in atomically thin crystals remains a hot topic in material science. Here, using first-principles calculations, we find that 1T-HfTe2 possessing no CDWs in the bulk form, unexpectedly shows a stable 2 × 2 CDW order in the monolayer form, which can be attributed to the enhancement of electron–phonon coupling (EPC) in the monolayer. Meanwhile, the CDW induces a metal-to-insulator transition in monolayer 1T-HfTe2 through the accompanying lattice distortion. Remarkably, Ising superconductivity with a significantly enhanced in-plane critical field can emerge in centrosymmetric monolayer 1T-HfTe2 after the CDW is suppressed by electron doping. The Ising paring is revealed to be protected by the spin–orbital locking without the participation of the inversion symmetry breaking which is a must for conventional 2H-NbSe2-like Ising superconductors. Our results open a new window for designing and controlling novel quantum states in two-dimensional (2D) matter.

Keywords: two-dimensional (2D) materials, first-principles calculations, charge density wave (CDW), Ising superconductivity, HfTe2

References(61)

[1]

Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 1988, 60, 1129–1181.

[2]

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

[3]

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

[4]

Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.

[5]

Wang, W.; Zhang, K.; Si, C. Two-dimensional charge-density-wave materials with unique advantages for electronics. Mater. Lab 2022, 1, 220027.

[6]

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech. 2015, 10, 765–769.

[7]

Chen, P.; Chan, Y. H.; Fang, X. Y.; Zhang, Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 2015, 6, 8943.

[8]

Singh, B.; Hsu, C. H.; Tsai, W. F.; Pereira, V. M.; Lin, H. Stable charge density wave phase in a 1T-TiSe2 monolayer. Phys. Rev. B 2017, 95, 245136.

[9]

Ryu, H.; Chen, Y.; Kim, H.; Tsai, H. Z.; Tang, S. J.; Jiang, J.; Liou, F.; Kahn, S.; Jia, C. H.; Omrani, A. A. et al. Persistent charge-density-wave order in single-layer TaSe2. Nano Lett. 2018, 18, 689–694.

[10]

Lian, C. S.; Heil, C.; Liu, X. Y.; Si, C.; Giustino, F.; Duan, W. H. Coexistence of superconductivity with enhanced charge density wave order in the two-dimensional limit of TaSe2. J. Phys. Chem. Lett. 2019, 10, 4076–4081.

[11]

Liu, L. W.; Yang, H.; Huang, Y. T.; Song, X.; Zhang, Q. Z.; Huang, Z. P.; Hou, Y. H.; Chen, Y. Y.; Xu, Z. Q.; Zhang, T. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 2021, 12, 1978.

[12]

Chen, Y.; Ruan, W.; Wu, M.; Tang, S. J.; Ryu, H.; Tsai, H. Z.; Lee, R. L.; Kahn, S.; Liou, F.; Jia, C. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 2020, 16, 218–224.

[13]

Nakata, Y.; Sugawara, K.; Chainani, A.; Oka, H.; Bao, C. H.; Zhou, S. H.; Chuang, P. Y.; Cheng, C. M.; Kawakami, T.; Saruta, Y. et al. Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2. Nat. Commun. 2021, 12, 5873.

[14]

Zhang, K.; Si, C.; Lian, C. S.; Zhou, J.; Sun, Z. M. Mottness collapse in monolayer 1T-TaSe2 with persisting charge density wave order. J. Mater. Chem. C 2020, 8, 9742–9747.

[15]

Ge, Y. Z.; Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2. Phys. Rev. B 2010, 82, 155133.

[16]

Duvjir, G.; Choi, B. K.; Jang, I.; Ulstrup, S.; Kang, S.; Thi Ly, T.; Kim, S.; Choi, Y. H.; Jozwiak, C.; Bostwick, A. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 2018, 18, 5432–5438.

[17]

Zhang, K.; Zou, N. L.; Ren, Y. R.; Wu, J. Z.; Si, C.; Duan, W. H. Realization of coexisting charge density wave and quantum spin/anomalous Hall state in monolayer NbTe2. Adv. Funct. Mater. 2022, 32, 2111675.

[18]

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

[19]

Lin, H. C.; Huang, W. T.; Zhao, K.; Lian, C. S.; Duan, W. H.; Chen, X.; Ji, S. H. Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res. 2018, 11, 4722–4727.

[20]

Chen, P.; Pai, W. W.; Chan, Y. H.; Takayama, A.; Xu, C. Z.; Karn, A.; Hasegawa, S.; Chou, M. Y.; Mo, S. K.; Fedorov, A. V. et al. Emergence of charge density waves and a pseudogap in single-layer TiTe2. Nat. Commun. 2017, 8, 516.

[21]

Zhou, J. S.; Bianco, R.; Monacelli, L.; Errea, I.; Mauri, F.; Calandra, M. Theory of the thickness dependence of the charge density wave transition in 1T-TiTe2. 2D Mater. 2020, 7, 045032.

[22]

Ren, M. Q.; Han, S.; Fan, J. Q.; Wang, L.; Wang, P. D.; Ren, W.; Peng, K.; Li, S. J.; Wang, S. Z.; Zheng, F. W. et al. Semiconductor-metal phase transition and emergent charge density waves in 1T-ZrX2 (X = Se, Te) at the two-dimensional limit. Nano Lett. 2022, 22, 476–484.

[23]

Li, S. Y.; Wu, G.; Chen, X. H.; Taillefer, L. Single-gap s-wave superconductivity near the charge-density-wave quantum critical point in CuxTiSe2. Phys. Rev. Lett. 2007, 99, 107001.

[24]

Kusmartseva, A. F.; Sipos, B.; Berger, H.; Forró, L.; Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 2009, 103, 236401.

[25]

Lian, C. S.; Si, C.; Duan, W. H. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 2018, 18, 2924–2929.

[26]

Zheng, F. P.; Feng, J. Electron–phonon coupling and the coexistence of superconductivity and charge-density wave in monolayer NbSe2. Phys. Rev. B 2019, 99, 161119.

[27]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[28]

Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 2015, 350, 1353–1357.

[29]

Lu, J. M.; Zheliuk, O.; Chen, Q. H.; Leermakers, I.; Hussey, N. E.; Zeitler, U.; Ye, J. T. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl. Acad. Sci. USA 2018, 115, 3551–3556.

[30]

de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.

[31]

Cui, J.; Li, P. L.; Zhou, J. D.; He, W. Y.; Huang, X. W.; Yi, J.; Fan, J.; Ji, Z. Q.; Jing, X. N.; Qu, F. M. et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 2019, 10, 2044.

[32]

Wickramaratne, D.; Khmelevskyi, S.; Agterberg, D. F.; Mazin, I. I. Ising superconductivity and magnetism in NbSe2. Phys. Rev. X 2020, 10, 041003.

[33]

Falson, J.; Xu, Y.; Liao, M. H.; Zang, Y. Y.; Zhu, K. J.; Wang, C.; Zhang, Z. T.; Liu, H. C.; Duan, W. H.; He, K. et al. Type-II Ising pairing in few-layer stanene. Science 2020, 367, 1454–1457.

[34]

Wang, C.; Lian, B.; Guo, X. M.; Mao, J. H.; Zhang, Z. T.; Zhang, D.; Gu, B. L.; Xu, Y.; Duan, W. H. Type-II Ising superconductivity in two-dimensional materials with spin–orbit coupling. Phys. Rev. Lett. 2019, 123, 126402.

[35]

Liu, Y.; Xu, Y.; Sun, J.; Liu, C.; Liu, Y. Z.; Wang, C.; Zhang, Z. T.; Gu, K. Y.; Tang, Y.; Ding, C. et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 2020, 20, 5728–5734.

[36]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[37]

Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562.

[38]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[42]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter. 2010, 22, 022201.

[43]

Mangelsen, S.; Naumov, P. G.; Barkalov, O. I.; Medvedev, S. A.; Schnelle, W.; Bobnar, M.; Mankovsky, S.; Polesya, S.; Näther, C.; Ebert, H. et al. Large nonsaturating magnetoresistance and pressure-induced phase transition in the layered semimetal HfTe2. Phys. Rev. B 2017, 96, 205148.

[44]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.

[45]

Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 2017, 89, 015003.

[46]

Allen, P. B.; Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 1975, 12, 905–922.

[47]

Tsipas, P.; Pappas, P.; Symeonidou, E.; Fragkos, S.; Zacharaki, C.; Xenogiannopoulou, E.; Siannas, N.; Dimoulas, A. Epitaxial HfTe2 dirac semimetal in the 2D limit. APL Mater. 2021, 9, 101103.

[48]

Whangbo, M. H.; Canadell, E.; Foury, P.; Pouget, J. P. Hidden Fermi surface nesting and charge density wave instability in low-dimensional metals. Science 1991, 252, 96–98.

[49]

Laverock, J.; Dugdale, S. B.; Major, Z.; Alam, M. A.; Ru, N.; Fisher, I. R.; Santi, G.; Bruno, E. Fermi surface nesting and charge-density wave formation in rare-earth tritellurides. Phys. Rev. B 2005, 71, 085114.

[50]

Johannes, M. D.; Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 2008, 77, 165135.

[51]

Weber, F.; Rosenkranz, S.; Castellan, J. P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K. P.; Egami, T.; Said, A. H.; Reznik, D. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 2011, 107, 107403.

[52]

Hellgren, M.; Baima, J.; Bianco, R.; Calandra, M.; Mauri, F.; Wirtz, L. Critical role of the exchange interaction for the electronic structure and charge-density-wave formation in TiSe2. Phys. Rev. Lett. 2017, 119, 176401.

[53]

Aminalragia-Giamini, S.; Marquez-Velasco, J.; Tsipas, P.; Tsoutsou, D.; Renaud, G.; Dimoulas, A. Molecular beam epitaxy of thin HfTe2 semimetal films. 2D Mater. 2016, 4, 015001.

[54]

Nakata, Y.; Sugawara, K.; Chainani, A.; Yamauchi, K.; Nakayama, K.; Souma, S.; Chuang, P. Y.; Cheng, C. M.; Oguchi, T.; Ueno, K. et al. Dimensionality reduction and band quantization induced by potassium intercalation in 1T-HfTe2. Phys. Rev. Mater. 2019, 3, 071001.

[55]

El Youbi, Z.; Jung, S. W.; Mukherjee, S.; Fanciulli, M.; Schusser, J.; Heckmann, O.; Richter, C.; Minár, J.; Hricovini, K.; Watson, M. D. et al. Bulk and surface electronic states in the dosed semimetallic HfTe2. Phys. Rev. B 2020, 101, 235431.

[56]

Wei, M. J.; Lu, W. J.; Xiao, R. C.; Lv, H. Y.; Tong, P.; Song, W. H.; Sun, Y. P. Manipulating charge density wave order in monolayer 1T-TiSe2 by strain and charge doping: A first-principles investigation. Phys. Rev. B 2017, 96, 165404.

[57]

Calandra, M.; Mauri, F. Charge-density wave and superconducting dome in TiSe2 from electron–phonon interaction. Phys. Rev. Lett. 2011, 106, 196406.

[58]

Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309–2310.

[59]
Tinkham, M. Introduction to Superconductivity. McGraw Hill: New York, 1996.
[60]

Zhang, X. M.; Jin, K. H.; Mao, J. H.; Zhao, M. W.; Liu, Z.; Liu, F. Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles. npj Comput. Mater. 2021, 7, 44.

[61]

Zhang, X. M.; Liu, F. Fulde-Ferrell-Larkin-Ovchinnikov pairing induced by a Weyl nodal line in an Ising superconductor with a high critical field. Phys. Rev. B 2022, 105, 024505.

File
12274_2023_5780_MOESM1_ESM.pdf (184.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 February 2023
Revised: 09 April 2023
Accepted: 25 April 2023
Published: 08 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press, corrected publication 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12274013 and 11874079), the open research fund program of the State key laboratory of low dimensional quantum physics (No. KF202103), and the Independent Research Project of Medical Engineering Laboratory of Chinese PLA General Hospital (No. 2022SYSZZKY10).

Return