AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A time sequential microfluid sensor with Tesla valve channels

Pengcheng Zhao1Haobin Wang1Yaozheng Wang1Wei Zhao2Mengdi Han3Haixia Zhang1( )
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing 100191, China
Department of Biomedical Engineering College of Future Technology, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

We designed a wearable time sequential sweat uric acid microfluid sensor with Tesla valve channels and fabricated the patch with laser process.

Abstract

The concentration of biomarkers in sweat can be used to evaluate human health, making efficient sweat sensing a focus of research. While flow channel design is often used to detect sweat velocity, it is rarely incorporated into the sensing of biomarkers, limiting the richness of sensing results. In this study, we report a time sequential sensing scheme for uric acid in sweat through a sequential design of Tesla valve channels. Graphene electrodes for detecting uric acid and directional Tesla valve flow channels were fabricated using laser engraving technology to realize time sequential sensing. The performance of the channels was verified through simulation. The time sequential detection of uric acid concentration in sweat can help researchers improve the establishment of human health management systems through flexible wearable devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5778_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Mena-Bravo, A.; de Castro, M. D. L. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharm. Biomed. Anal. 2014, 90, 139–147.

[2]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[3]

Yang, Y. R.; Song, Y.; Bo, X. J.; Min, J. H.; Pak, O. S.; Zhu, L. L.; Wang, M. Q.; Tu, J. B.; Kogan, A.; Zhang, H. X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224.

[4]

Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.

[5]

Kim, S.; Lee, B.; Reeder, J. T.; Seo, S. H.; Lee, S. U.; Hourlier-Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y. S. et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915.

[6]

Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371.

[7]

He, W. Y.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Lu, W. D.; Liang, X. P.; Zhang, X.; Yang, F. C.; Zhang, Y. Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 2019, 5, eaax0649.

[8]

Nyein, H. Y. Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T. S.; Jansson, E.; Ahn, C. H.; Hangasky, J. A.; Zhao, J. Q.; Lin, Y. J. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 2019, 5, eaaw9906.

[9]

Wang, M. Q.; Yang, Y. R.; Min, J. H.; Song, Y.; Tu, J. B.; Mukasa, D.; Ye, C.; Xu, C. H.; Heflin, N.; Mccune, J. S. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235.

[10]

Mogera, U.; Guo, H.; Namkoong, M.; Rahman, S.; Nguyen, T.; Tian, L. M. Wearable plasmonic paper-based microfluidics for continuous sweat analysis. Sci. Adv. 2022, 8, eabn1736.

[11]

Pei, X. Y.; Sun, M. M.; Wang, J. J.; Bai, J.; Bo, X. J.; Zhou, M. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring. Small 2022, 18, 2205061.

[12]

Nyein, H. Y. Y.; Bariya, M.; Tran, B.; Ahn, C. H.; Brown, B. J.; Ji, W. B.; Davis, N.; Javey, A. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 2021, 12, 1823.

[13]

Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.

[14]

Kim, J.; Im, S.; Kim, J. H.; Kim, S. M.; Lee, S. M.; Lee, J.; Im, J. P.; Woo, J.; Moon, S. E. Artificial perspiration membrane by programmed deformation of thermoresponsive hydrogels. Adv. Mater. 2020, 32, 1905901.

[15]

Son, J.; Bae, G. Y.; Lee, S.; Lee, G.; Kim, S. W.; Kim, D.; Chung, S.; Cho, K. Cactus-spine-inspired sweat-collecting patch for fast and continuous monitoring of sweat. Adv. Mater. 2021, 33, 2102740.

[16]

Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 2017, 6, 1601355.

[17]
Thompson, S. M.; Walters, D. K.; Paude, B. J.; Jamal, T. A numerical investigation of multi-staged tesla valves. In Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, Incline Village, USA, 2013.
[18]

Nguyen, O. M.; Abouezzi, J.; Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat. Commun. 2021, 12, 2884.

[19]

You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.

[20]

Hu, P. L.; Wang, P. F.; Liu, L.; Ruan, X. D.; Zhang, L. J.; Xu, Z. B. Numerical investigation of Tesla valves with a variable angle. PHYS FLUIDS 2022, 34, 033603.

Nano Research
Pages 11667-11673
Cite this article:
Zhao P, Wang H, Wang Y, et al. A time sequential microfluid sensor with Tesla valve channels. Nano Research, 2023, 16(9): 11667-11673. https://doi.org/10.1007/s12274-023-5778-8
Topics:
Part of a topical collection:

1260

Views

11

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 06 April 2023
Accepted: 25 April 2023
Published: 27 May 2023
© Tsinghua University Press 2023
Return