AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption

Naixin Zhai1Juhua Luo1,2( )Pengcheng Shu1Jie Mei1Xiaopeng Li1Wenxing Yan1
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, Yancheng Institute of Technology, Yancheng 224051, China
Show Author Information

Graphical Abstract

The remarkable electromagnetic wave absorption performance can be ascribed to the optimal impedance matching, multiple scattering and reflections, dipole polarization, conductive loss, and interfacial polarization.

Abstract

Rational design of the components and microstructure is regarded as an efficacious strategy for the high-performance electromagnetic wave absorbing (EMWA) materials. Herein, the CoTe2@MoS2 nanocomposites with CoTe2 nanorods and MoS2 nanosheets were synthesized via a hydrothermal method. The microstructure and composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The CoTe2@MoS2 composite was composed of stacked CoTe2 as the core and intertwined MoS2 nanosheets as the shell. The electromagnetic parameters of the CoTe2@MoS2 composites were investigated by vector network analyzer (VNA). The EMWA property of the composite showed a trend of first increasing and then decreasing with the increasing content of MoS2. When the mass ratio of MoS2 and CoTe2 was 1:1, the CoTe2@MoS2 composite exhibited the minimum reflection loss value of −68.10 dB at 4.71 GHz, and the effective absorption bandwidth value might reach 4.64 GHz (13.08–17.72 GHz) at a matching thickness of 1.60 mm with filler loading of 50 wt.%. The extraordinary EMWA property was attributed to the optimized impedance matching, multiple scattering and reflections, dipole polarization, conductive loss, and interfacial polarization. Therefore, the present approach to the design of microstructure and interface engineering offers a crucial way to construct high-performance EMW absorbers.

References

[1]

Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

[2]

Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

[3]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[4]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2021, 32, 2108194.

[5]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[6]

Zhang, X. C.; Li, B.; Xu, J.; Zhang, X.; Shi, Y. N.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2210456.

[7]

Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

[8]

Wang, Y. H.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Zhao, H. H.; Du, Y. C. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 2019, 372, 312–320.

[9]

Pan, F.; Wu, X. F.; Batalu, D.; Lu, W.; Guan, H. T. Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder Mater. 2023, 2, 100100.

[10]

Zhang, Z. W.; Cai, Z. H.; Xia, L.; Zhao, D.; Fan, F.; Huang, Y. Synergistically assembled cobalt-telluride/graphene foam with high-performance electromagnetic wave absorption in both gigahertz and terahertz band ranges. ACS Appl. Mater. Interfaces 2021, 13, 30967–30979.

[11]

Chen, J. B.; Liang, X. H.; Quan, B.; Yang, Z. H.; Du, Y. W.; Ji, G. B. 3D flake-like Bi2Te3 with outstanding lightweight electromagnetic wave absorption feature. Part. Part. Syst. Charact. 2018, 35, 1700468.

[12]

Wu, C.; Wang, J.; Zhang, X. H.; Kang, L. X.; Cao, X.; Zhang, Y. Y.; Niu, Y. T.; Yu, Y. Y.; Fu, H. L.; Shen, Z. J. et al. Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 2022, 15, 7.

[13]

Chen, J. B.; Tan, S. J.; Liang, X. H.; Liu, W.; Ji, G. B. Rod-like Te as excellent microwave absorber: A new exploration. J. Alloys Compd. 2019, 777, 1197–1203.

[14]

Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

[15]

Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

[16]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[17]

Bai, J. L.; Huang, S. J.; Yao, X. M.; Liu, X. J.; Huang, Z. R. Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption. J. Mater. Chem. A. 2023, 11, 6274–6285.

[18]

Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

[19]

Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

[20]

Liu, Z. H.; Fan, Y. H.; Liu, Z. G.; Zhang, Q. Y.; Zhang, B. L. Wrinkled 3D MoS2/RGO/NC composite microspheres: Optimal composition and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107119.

[21]

Jiang, L.; Zhu, Y. J.; Cui, J. B. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: A general solvothermal synthesis and optical properties. Eur. J. Inorg. Chem. 2010, 19, 3005–3011.

[22]

Lei, Y. X.; Miao, N. X.; Zhou, J. P.; Hassan, Q. U.; Wang, J. Z. Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations. Sci. Technol. Adv. Mater. 2017, 18, 325–333.

[23]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[24]

Mao, H.; Yu, J. M.; Li, J.; Zheng, T. B.; Cen, J.; Ye, Y. W. A high-performance supercapacitor electrode based on nanoflower-shaped CoTe2. Ceram. Int. 2020, 46, 6991–6994.

[25]

Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

[26]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2022, 139, 137–146.

[27]

Zhang, Y. F.; Li, Y. L.; Wei, M. M.; Yang, D. T.; Zhang, Q. Y.; Zhang, B. L. Core–shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties. J. Mater. Sci. Technol. 2022, 128, 148–159.

[28]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[29]

Shi, X. F.; Liu, Z. W.; Li, X.; You, W. B.; Shao, Z. Z.; Che, R. C. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2−x heterostructure for broadband microwave absorption. Chem. Eng. J. 2021, 419, 130020.

[30]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[31]

Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 2021, 225, 109306.

[32]

Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Efficient polysulfide trapping and conversion on N-doped CoTe2 via enhanced dual-anchoring effect. Small 2021, 17, 2102962.

[33]

Zhou, X. J.; Wen, J. W.; Wang, Z. N.; Ma, X. H.; Wu, H. J. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 2022, 115, 148–155.

[34]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[35]

Hou, Z. L.; Ma, X. M.; Zhang, J. Y.; Li, C. J.; Wang, Y. L.; Cao, M. S. Fascinating electrical transport behavior of topological insulator Bi2Te3 nanorods: Toward electrically responsive smart materials. Small 2022, 18, 2205624.

[36]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[37]
Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-5522-4.
[38]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[39]

Wang, Y.; Di, X. C.; Fu, Y. Q.; Wu, X. M.; Cao, J. T. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 2021, 587, 561–573.

[40]

Chen, X. L.; Wang, W.; Shi, T.; Wu, G. L.; Lu, Y. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 2020, 163, 202–212.

[41]

Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

[42]

Su, Q.; Wang, B. C.; Mu, C. P.; Zhai, K.; Nie, A. M.; Xiang, J. Y.; Wen, F. S. Polypyrrole coated 3D flower MoS2 composites with tunable impedance for excellent microwave absorption performance. J. Alloys Compd. 2021, 888, 161487.

[43]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[44]

Zhu, W. F.; Zhang, L.; Zhang, W. D.; Zhang, F.; Li, Z.; Zhu, Q.; Qi, S. H. Facile synthesis of GNPs@NixSy@MoS2 composites with hierarchical structures for microwave absorption. Nanomaterials 2019, 9, 1403.

[45]

Zhang, M.; Qian, C.; Zhu, R. T.; Liu, H. M.; Zhang, Y. X.; Liu, Q. C. Flower-like MoS2 self-assembled on multiferroic Z-type Sr3Co2Fe24O41 hexaferrite for ultra-wideband microwave absorption. J. Alloys Compd. 2022, 926, 166881.

[46]

Liao, Z. J.; Ma, M. L.; Bi, Y. X.; Tong, Z. Y.; Chung, K. L.; Li, Z. J.; Ma, Y.; Gao, B. L.; Cao, Z. K.; Sun, R. R. et al. MoS2 decorated on one-dimensional MgFe2O4/MgO/C composites for high-performance microwave absorption. J. Colloid Interface Sci. 2022, 606, 709–718.

Nano Research
Pages 10698-10706
Cite this article:
Zhai N, Luo J, Shu P, et al. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Research, 2023, 16(7): 10698-10706. https://doi.org/10.1007/s12274-023-5777-9
Topics:

696

Views

68

Crossref

65

Web of Science

67

Scopus

0

CSCD

Altmetrics

Received: 30 March 2023
Revised: 23 April 2023
Accepted: 24 April 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return