Journal Home > Volume 16 , Issue 7

Osteosarcoma (OS) is the most normally primary malignant bone cancer in adolescents. Due to their analogous X-ray attenuation properties, healthy bones and malignancies with iodine enhancement cannot be distinguished by conventional computed tomography (CT). As one kind of spectral CT, dual-energy CT (DECT) offers multiple functions for material separation and cancer treatments. Herein, bismuth sulfide (Bi2S3) nanorods (NRs) were synthesized as special contrast agents (CAs) for DECT, which have superior imaging properties than clinical iodine CAs. At the same time, the high photothermal conversion rates of Bi2S3 NRs can be used for DECT-guided photothermal therapy (PTT) to destroy OS and inhibit tumor growth under the guidance of DECT imaging. Importantly, DECT imaging real-timely monitored that PTT could accelerate the diffusion of Bi2S3 NRs in the tumor, obtaining detailed information on the internal distribution of nanomaterials in tumors around the bone to avoid injury to normal tissues by PTT. Overall, the proposed strategy of DECT imaging-guided PTT appears enormous promise for bone disease treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spectral computed tomography-guided photothermal therapy of osteosarcoma by bismuth sulfide nanorods

Show Author's information Yuhan Li1,§Xiaoxue Tan2,§Han Wang3Xiuru Ji3Zi Fu3Kai Zhang1Weijie Su4( )Jian Zhang1,2( )Dalong Ni3( )
School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, China
Shanghai University, Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, China
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, China
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, No. 639, Zhizaoju Rd. Shanghai 200011, China

§ Yuhan Li and Xiaoxue Tan contributed equally to this work.

Abstract

Osteosarcoma (OS) is the most normally primary malignant bone cancer in adolescents. Due to their analogous X-ray attenuation properties, healthy bones and malignancies with iodine enhancement cannot be distinguished by conventional computed tomography (CT). As one kind of spectral CT, dual-energy CT (DECT) offers multiple functions for material separation and cancer treatments. Herein, bismuth sulfide (Bi2S3) nanorods (NRs) were synthesized as special contrast agents (CAs) for DECT, which have superior imaging properties than clinical iodine CAs. At the same time, the high photothermal conversion rates of Bi2S3 NRs can be used for DECT-guided photothermal therapy (PTT) to destroy OS and inhibit tumor growth under the guidance of DECT imaging. Importantly, DECT imaging real-timely monitored that PTT could accelerate the diffusion of Bi2S3 NRs in the tumor, obtaining detailed information on the internal distribution of nanomaterials in tumors around the bone to avoid injury to normal tissues by PTT. Overall, the proposed strategy of DECT imaging-guided PTT appears enormous promise for bone disease treatment.

Keywords: nanomedicine, photothermal therapy, bismuth sulfide, osteosarcoma, dual-energy computed tomography

References(47)

[1]

Corre, I.; Verrecchia, F.; Crenn, V.; Redini, F.; Trichet, V. The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells 2020, 9, 976.

[2]

Mirabello, L.; Troisi, R. J.; Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer 2009, 115, 1531–1543.

[3]

Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 2009, 152, 3–13.

[4]

Rickel, K.; Fang, F.; Tao, J. N. Molecular genetics of osteosarcoma. Bone 2017, 102, 69–79.

[5]

Ferrari, S.; Palmerini, E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr. Opin. Oncol. 2007, 19, 341–346.

[6]

Hattinger, C. M.; Pasello, M.; Ferrari, S.; Picci, P.; Serra, M. Emerging drugs for high-grade osteosarcoma. Expert Opin. Emerg. Drugs 2010, 15, 615–634.

[7]

Tredan, O.; Galmarini, C. M.; Patel, K.; Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 2007, 99, 1441–1454.

[8]

Zhang, Y.; Yang, J. Q.; Zhao, N.; Wang, C.; Kamar, S.; Zhou, Y. H.; He, Z. W.; Yang, J. F.; Sun, B.; Shi, X. Q. et al. Progress in the chemotherapeutic treatment of osteosarcoma. Oncol. Lett. 2018, 16, 6228–6237.

[9]

Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.

[10]

Tu, L.; Liao, Z. H.; Luo, Z.; Wu, Y. L.; Herrmann, A.; Huo, S. D. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021, 1, 20210023.

[11]

Saraf, A. J.; Fenger, J. M.; Roberts, R. D. Osteosarcoma: Accelerating progress makes for a hopeful future. Front. Oncol. 2018, 8, 4.

[12]

Errani, C.; Longhi, A.; Rossi, G.; Rimondi, E.; Biazzo, A.; Toscano, A.; Alì, N.; Ruggieri, P.; Alberghini, M.; Picci, P. et al. Palliative therapy for osteosarcoma. Expert Rev. Anticancer Ther. 2011, 11, 217–227.

[13]

Harrison, D. J.; Geller, D. S.; Gill, J. D.; Lewis, V. O.; Gorlick, R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 2018, 18, 39–50.

[14]

Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 2021, 18, 609–624.

[15]

Liao, J. F.; Han, R. X.; Wu, Y. Z.; Qian, Z. Y. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021, 9, 18.

[16]

Naha, P. C.; Hsu, J. C.; Kim, J.; Shah, S.; Bouché, M.; Si-Mohamed, S.; Rosario-Berrios, D. N.; Douek, P.; Hajfathalian, M.; Yasini, P. et al. Dextran-coated cerium oxide nanoparticles: A computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 2020, 14, 10187–10197.

[17]

Aslan, N.; Ceylan, B.; Koç, M. M.; Findik, F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct. 2020, 1219, 128599.

[18]

Badea, C. T.; Clark, D. P.; Holbrook, M.; Srivastava, M.; Mowery, Y.; Ghaghada, K. B. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: A comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys. Med. Biol. 2019, 64, 065007.

[19]

Jin, Y. Y.; Ni, D. L.; Gao, L.; Meng, X. F.; Lv, Y.; Han, F.; Zhang, H.; Liu, Y. Y.; Yao, Z. W.; Feng, X. Y. et al. Harness the power of upconversion nanoparticles for spectral computed tomography diagnosis of osteosarcoma. Adv. Funct. Mater. 2018, 28, 1802656.

[20]

McCollough, C. H.; Leng, S.; Yu, L. F.; Fletcher, J. G. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653.

[21]

Poirot, M. G.; Bergmans, R. H. J.; Thomson, B. R.; Jolink, F. C.; Moum, S. J.; Gonzalez, R. G.; Lev, M. H.; Tan, C. O.; Gupta, R. Physics-informed deep learning for dual-energy computed tomography image processing. Sci. Rep. 2019, 9, 17709.

[22]

Yu, L. F.; Leng, S.; McCollough, C. H. Dual-energy CT-based monochromatic imaging. AJR Am. J. Roentgenol. 2012, 199, S9–S15.

[23]

Patino, M.; Prochowski, A.; Agrawal, M. D.; Simeone, F. J.; Gupta, R.; Hahn, P. F.; Sahani, D. V. Material separation using dual-energy CT: Current and emerging applications. RadioGraphics 2016, 36, 1087–1105.

[24]

Graser, A.; Johnson, T. R. C.; Chandarana, H.; Macari, M. Dual energy CT: Preliminary observations and potential clinical applications in the abdomen. Eur. Radiol. 2009, 19, 13–23.

[25]

Sugawara, H.; Suzuki, S.; Katada, Y.; Ishikawa, T.; Fukui, R.; Yamamoto, Y.; Abe, O. Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging: Advantages and disadvantages. Eur. Radiol. 2019, 29, 1400–1407.

[26]

Liu, Y. L.; Ai, K. L.; Lu, L. H. Nanoparticulate X-ray computed tomography contrast agents: From design validation to in vivo applications. Acc. Chem. Res. 2012, 45, 1817–1827.

[27]
Ritter, J.; Bielack, S. S. Osteosarcoma. Ann. Oncol. 2010, 21 Suppl 7, vii320-5.
[28]

Xiang, X. J.; Feng, X.; Lu, S. J.; Jiang, B. W.; Hao, D. Y.; Pei, Q.; Xie, Z. G.; Jing, X. B. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration 2022, 2, 20220008.

[29]

Yu, W.; Wang, Y. T.; Zhu, J.; Jin, L. B.; Liu, B.; Xia, K. S.; Wang, J. J.; Gao, J. Q.; Liang, C. Z.; Tao, H. M. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 2019, 192, 128–139.

[30]

Wang, H.; Zeng, X. Q.; Pang, L. B.; Wang, H. H.; Lin, B. C.; Deng, Z. W.; Qi, E. L. X.; Miao, N.; Wang, D. P.; Huang, P. et al. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. Chem. Eng. J. 2020, 396, 125081.

[31]

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

[32]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[33]

Chen, J. Q.; Ning, C. Y.; Zhou, Z. N.; Yu, P.; Zhu, Y.; Tan, G. X.; Mao, C. B. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 2019, 99, 1–26.

[34]

Li, X. D.; Yue, X. L.; Wang, J. R.; Liang, X. L.; Jing, L. J.; Lin, L.; Yang, Y. B.; Feng, S. S.; Qian, Y. J.; Dai, Z. F. Prussian blue nanoparticle-loaded microbubbles for photothermally enhanced gene delivery through ultrasound-targeted microbubble destruction. Sci. Bull. 2016, 61, 148–156.

[35]

Sun, J. C.; Xing, F.; Braun, J.; Traub, F.; Rommens, P. M.; Xiang, Z.; Ritz, U. Progress of phototherapy applications in the treatment of bone cancer. Int. J. Mol. Sci. 2021, 22, 11354.

[36]

Jiang, Y. Y.; Huang, J. G.; Xu, C.; Pu, K. Y. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 2021, 12, 742.

[37]

Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

[38]

Xiong, Y. X.; Sun, F.; Liu, P.; Yang, Z.; Cao, J. G.; Liu, H. J.; Liu, P.; Hu, J. L.; Xu, Z. S.; Yang, S. L. A biomimetic one-pot synthesis of versatile Bi2S3/FeS2 theranostic nanohybrids for tumor-targeted photothermal therapy guided by CT/MR dual-modal imaging. Chem. Eng. J. 2019, 378, 122172.

[39]

Shahbazi, M. A.; Faghfouri, L.; Ferreira, M. P. A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H. A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321.

[40]

Liu, J.; Zheng, X. P.; Yan, L.; Zhou, L. J.; Tian, G.; Yin, W. Y.; Wang, L. M.; Liu, Y.; Hu, Z. B.; Gu, Z. J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015, 9, 696–707.

[41]

Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246–251.

[42]

Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X. H.; Du, J. F.; Xie, J. N.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017, 29, 1704136.

[43]

Lu, Y.; Li, L. H.; Lin, Z. F.; Li, M.; Hu, X. M.; Zhang, Y.; Peng, M. Y.; Xia, H.; Han, G. Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth sulfide@mesoporous silica nanoparticles. Adv. Healthcare Mater. 2018, 7, 1800602.

[44]

Wei, B. X.; Zhang, X. J.; Zhang, C.; Jiang, Y.; Fu, Y. Y.; Yu, C. S.; Sun, S. K.; Yan, X. P. Facile synthesis of uniform-sized bismuth nanoparticles for CT visualization of gastrointestinal tract in vivo. ACS Appl. Mater. Interfaces 2016, 8, 12720–12726.

[45]

Malca, M. Y.; Bao, H. Z.; Bastaille, T.; Saadé, N. K.; Kinsella, J. M.; Friščić, T.; Moores, A. Mechanically activated solvent-free assembly of ultrasmall Bi2S3 nanoparticles: A novel, simple, and sustainable means to access chalcogenide nanoparticles. Chem. Mater. 2017, 29, 7766–7773.

[46]

Cheng, X. J.; Yong, Y.; Dai, Y. H.; Song, X.; Yang, G.; Pan, Y.; Ge, C. C. Enhanced radiotherapy using bismuth sulfide nanoagents combined with photo-thermal treatment. Theranostics 2017, 7, 4087–4098.

[47]

Li, Y. H.; Younis, M. H.; Wang, H.; Zhang, J.; Cai, W. B.; Ni, D. L. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv. Drug Deliv. Rev. 2022, 189, 114524.

File
12274_2023_5775_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 February 2023
Revised: 20 April 2023
Accepted: 24 April 2023
Published: 02 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82102190), the Foundation of National Facility for Translational Medicine (Shanghai) (No. TMSK-2021-122), and Shanghai Municipal Health Commission Research Project (No. 201840082). The animal study protocol was approved by the Institutional Animal Care and Use Committee at Shanghai JiaoTong University.

Return