AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress in MOFs-based nanozymes for biosensing

Imamdin ChandioYongjian Ai( )Lei WuQionglin Liang( )
MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Nanozymes are nanomaterials with enzyme-mimicking catalytic activity, and we summarize the up-to-date development of the synthesis approach of metal-organic framework (MOF)-based composite nanozymes and their applications in biosensing.

Abstract

Nanozymes are nanomaterials with enzyme-mimicking catalytic activity. Compared to natural enzymes, nanozymes show various properties such as easy to manufacture, stable, adjustable, and inexpensive. Nanozymes play key roles in biosensing, biocatalysis, and disease treatment. As an important kind of nanozymes, metal-organic framework (MOF)-based nanozymes are receiving a lot of attention due to their structural properties and composition. Rationally developing MOF with enzymes-like catalytic properties has opened new perspectives in biosensing. This review summarizes the up-to-date developments in synthesizing two-dimensional and three-dimensional MOF-based nanozymes and their applications in biosensing. Firstly, classification of nanozymes obtained by MOFs is categorized, and different properties of MOF-based nanozymes are described. Then, the distinctive applications of MOF-based nanozymes in identifying various analytes are thoroughly summarized. Finally, the recent challenges and progressive directions in this area are highlighted.

References

[1]

Wang, Y. N.; Zhang, J. W.; Zhao, Y.; Pu, M. J.; Song, X. Y.; Yu, L. M.; Yan, X. F.; Wu, J.; He, Z. Y. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 2022, 15, 8156–8184.

[2]

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

[3]

Das, A.; Pant, U.; Cao, C. N.; Moirangthem, R. S.; Kamble, H. B. Fabrication of plasmonic nanopyramidal array as flexible SERS substrate for biosensing application. Nano Res. 2023, 16, 1132–1140.

[4]

Zhang, X.; Chen, J.; Hu, J. W.; du Rietz, A.; Wu, X. Y.; Zhang, R. L.; Zhang, Z. P.; Uvdal, K.; Hu, Z. J. Single-wavelength-excited fluorogenic nanoprobe for accurate realtime ratiometric analysis of broad pH fluctuations in mitophagy. Nano Res. 2022, 15, 6515–6521.

[5]

Martynenko, I.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727.

[6]

Chandio, I.; Janjhi, F. A.; Memon, A. A.; Memon, S.; Ali, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Khan, W. S. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2021, 500, 114848.

[7]

Janjhi, F. A.; Chandio, I.; Memon, A. A.; Ahmed, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep. Purif. Technol. 2021, 274, 117969.

[8]

Lee, J.; Kim, J.; Kim, S.; Min, D. H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 2016, 105, 275–287.

[9]

Yang, N.; Chen, X. P.; Ren, T. L.; Zhang, P.; Yang, D. G. Carbon nanotube based biosensors. Sens. Actuators B: Chem. 2015, 207, 690–715.

[10]

Hu, W. T.; Wang, C. L.; Gao, D.; Liang, Q. L. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J. Appl. Toxicol. 2023, 43, 32–46.

[11]

Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C. Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnology 2013, 24, 442002.

[12]

Zheng, Y. B.; Ma, L. D.; Wu, J. L.; Wang, Y. M.; Meng, X. S.; Hu, P.; Liang, Q. L.; Xie, Y. Y.; Luo, G. A. Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening. Talanta 2022, 241, 123262.

[13]
Moreno-Bondi, M. C.; Benito-Peña, E.; Carrasco, S.; Urraca, J. Molecularly imprinted polymer-based optical chemosensors for selective chemical determinations. In Molecularly Imprinted Polymers for Analytical Chemistry Applications. Kutner, W.; Sharma, P. S., Eds.; Royal Society of Chemistry: London, 2018; pp 227–281.
[14]

Khor, S. M.; Choi, J.; Won, P.; Ko, S. H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II diabetes. Nanomaterials 2022, 12, 221.

[15]

Villalonga, A.; Sánchez, A.; Mayol, B.; Reviejo, J.; Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 2022, 43, 18–26.

[16]
Satish, L.; Baral, A. Functionalized nanomaterials for biosensing application. In Nanomaterials-Based Sensing Platforms. Samantara, A. K.; Raj, S.; Ratha, S., Eds.; Apple Academic Press: New York, 2022; pp 37–73.
[17]

Lu, S. Y.; Wu, H.; Hou, J. W.; Liu, L. M.; Li, J.; Harris, C. J.; Lao, C. Y.; Guo, Y. Z.; Xi, K.; Ding, S. J. et al. Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Res. 2020, 13, 2289–2298.

[18]

Javar, H. A.; Garkani-Nejad, Z.; Dehghannoudeh, G.; Mahmoudi-Moghaddam, H. Development of a new electrochemical DNA biosensor based on Eu3+ doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Anal. Chim. Acta 2020, 1133, 48–57.

[19]

Gupta, R.; Raza, N.; Bhardwaj, S. K.; Vikrant, K.; Kim, K. H.; Bhardwaj, N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater. 2021, 401, 123379.

[20]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

[21]
He, M. Q.; Ai, Y. J.; Hu, W. T.; Guan, L. D.; Ding, M. Y.; Liang, Q. L. Recent advances of seed-mediated growth of metal nanoparticles: From growth to applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202211915.
[22]

Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

[23]

Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.

[24]

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

[25]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[26]

Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

[27]

Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461–1470.

[28]

Dong, B.; Retoux, R.; De Waele, V.; Chiodo, S. G.; Mineva, T.; Cardin, J.; Mintova, S. Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters. Microporous Mesoporous Mater. 2017, 244, 74–82.

[29]

Wang, Y. D.; Zulpya, M.; Zhang, X. Y.; Xu, S. H.; Sun, J.; Dong, B. Recent advances of metal-organic frameworks-based nanozymes for bio-applications. Chem. Res. Chin. Univ. 2022, 38, 1324–1343.

[30]

Li, B.; Wen, H. M.; Zhou, W.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: What, how, and why. J. Phys. Chem. Lett. 2014, 5, 3468–3479.

[31]

Sun, X. L.; Wang, L.; Lynch, C. D.; Sun, X. K.; Li, X.; Qi, M. L.; Ma, C.; Li, C. Y.; Dong, B.; Zhou, Y. M. et al. Nanoparticles having amphiphilic silane containing chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens. J. Dent. 2019, 81, 70–84.

[32]

Zhang, X. R.; Sun, J.; Liu, J. S.; Xu, H. W.; Dong, B.; Sun, X. K.; Zhang, T. X.; Xu, S. H.; Xu, L.; Bai, X. et al. Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sens. Actuators B: Chem. 2018, 255, 2919–2926.

[33]

Wan, W.; Liang, Q. L.; Zhang, X. Q.; Yan, M.; Ding, M. Y. Magnetic metal-organic frameworks for selective enrichment and exclusion of proteins for MALDI-TOF MS analysis. Analyst 2016, 141, 4568–4572.

[34]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[35]

Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

[36]

Yi, K. Y.; Zhang, X. T.; Zhang, L. Eu3+@metal-organic frameworks encapsulating carbon dots as ratiometric fluorescent probes for rapid recognition of anthrax spore biomarker. Sci. Total Environ. 2020, 743, 140692.

[37]

Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J. P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz. 2017, 4, 55–63.

[38]

Huang, X.; Zhang, S. T.; Tang, Y. J.; Zhang, X. Y.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216.

[39]

Li, S. Q.; Liu, X. D.; Chai, H. X.; Huang, Y. M. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trend. Anal. Chem. 2018, 105, 391–403.

[40]

Ding, K. L.; Hu, Z. N.; Zhang, W. H.; Liang, J. X.; Wang, Y. M.; Li, H.; Sun, Z. J.; Liang, Q. L.; Sun, H. B. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity. Microporous Mesoporous Mater. 2022, 332, 111693.

[41]

Li, J. F.; Liu, L.; Ai, Y. J.; Liu, Y.; Sun, H. B.; Liang, Q. L. Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510.

[42]

Wang, L. J.; Hu, Z.; Wu, S. W.; Pan, J. M.; Xu, X. C.; Niu, X. H. A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal. Chim. Acta 2020, 1121, 26–34.

[43]

Lin, T. R.; Qin, Y. M.; Huang, Y. L.; Yang, R. T.; Hou, L.; Ye, F. G.; Zhao, S. L. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem. Commun. 2018, 54, 1762–1765.

[44]

Niu, X. H.; Li, X.; Lyu, Z. Y.; Pan, J. M.; Ding, S. C.; Ruan, X. F.; Zhu, W. L.; Du, D.; Lin, Y. H. Metal-organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020, 56, 11338–11353.

[45]

Ling, P. H.; Lei, J. P.; Zhang, L.; Ju, H. X. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 2015, 87, 3957–3963.

[46]

Cui, L.; Wu, J.; Li, J.; Ju, H. X. Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal-organic framework. Anal. Chem. 2015, 87, 10635–10641.

[47]

Cheng, H. J.; Liu, Y. F.; Hu, Y. H.; Ding, Y. B.; Lin, S. C.; Cao, W.; Wang, Q.; Wu, J. J. X.; Muhammad, F.; Zhao, X. Z. et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552–11559.

[48]

Ruan, X. F.; Liu, D.; Niu, X. H.; Wang, Y. J.; Simpson, C. D.; Cheng, N.; Du, D.; Lin, Y. H. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal. Chem. 2019, 91, 13847–13854.

[49]

Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem.—Eur. J. 2013, 19, 15105–15108.

[50]

Liu, Y. L.; Zhao, X. J.; Yang, X. X.; Li, Y. F. A nano-sized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 2013, 138, 4526–4531.

[51]

Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X. Q.; Yu, S. H.; Jiang, H. L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 2014, 50, 1092–1094.

[52]

Sun, Z. J.; Jiang, Z. W.; Li, Y. F. Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal-organic framework hybrids as SERS substrates for folic acid detection. RSC Adv. 2016, 6, 79805–79810.

[53]

Li, Y.; Li, Y. N.; Zheng, J. W.; Dong, X. Y.; Guo, R. X.; Wang, Y. M.; Hu, Z. N.; Ai, Y. J.; Liang, Q. L.; Sun, H. B. Metal-organic framework-encapsulated CoCu nanoparticles for the selective transfer hydrogenation of nitrobenzaldehydes: Engineering active armor by the half-way injection method. Chem.—Eur. J. 2021, 27, 1080–1087.

[54]

Lu, J. Y.; Xiong, Y. H.; Liao, C. J.; Ye, F. G. Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Anal. Methods 2015, 7, 9894–9899.

[55]

Ye, K.; Wang, L. J.; Song, H. W.; Li, X.; Niu, X. H. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J. Mater. Chem. B 2019, 7, 4794–4800.

[56]

Shi, Q. R.; Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic frameworks-based catalysts for electrochemical oxygen evolution. Mater. Horiz. 2019, 6, 684–702.

[57]

Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

[58]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[59]

Ai, Y. J.; He, M. Q.; Sun, H.; Jia, X. M.; Wu, L.; Zhang, X. Y.; Sun, H. B.; Liang, Q. L. Ultra-small high-entropy alloy nanoparticles: Efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 2023, 35, 2302335.

[60]

He, Y. F.; Li, X.; Xu, X. C.; Pan, J. M.; Niu, X. H. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J. Mater. Chem. B 2018, 6, 5750–5755.

[61]

Zhang, X. Q.; Liang, Q. L.; Han, Q.; Wan, W.; Ding, M. Y. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 2016, 141, 4219–4226.

[62]

Liu, H. Q.; Rong, J. N.; Shen, G. Q.; Song, Y.; Gu, W.; Liu, X. A fluorescent probe for sequential sensing of MnO4 and Cr2O72− ions in aqueous medium based on a UCNS/TMB nanosystem. Dalton Trans. 2019, 48, 4168–4175.

[63]

Sloan-Dennison, S.; Laing, S.; Shand, N. C.; Graham, D.; Faulds, K. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 2017, 142, 2484–2490.

[64]

Wu, A. Q.; Wang, W. Q.; Zhan, H. B.; Cao, L. A.; Ye, X. L.; Zheng, J. J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W. H.; Wang, G. E. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2021, 14, 438–443.

[65]

Niu, X. H.; Xu, X. C.; Li, X.; Pan, J. M.; Qiu, F. X.; Zhao, H. L.; Lan, M. B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018, 54, 13443–13446.

[66]

He, L.; Li, Y.; Wu, Q.; Wang, D. M.; Li, C. M.; Huang, C. Z.; Li, Y. F. Ru(III)-based metal-organic gels: Intrinsic horseradish and NADH peroxidase-mimicking nanozyme. ACS Appl. Mater. Interfaces 2019, 11, 29158–29166.

[67]

Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

[68]

Liu, Y. F.; Wang, X. Y.; Wei, H. Light-responsive nanozymes for biosensing. Analyst 2020, 145, 4388–4397.

[69]

Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.

[70]

Wang, Y.; Liang, R. P.; Qiu, J. D. Nanoceria-templated metal-organic frameworks with oxidase-mimicking activity boosted by hexavalent chromium. Anal. Chem. 2020, 92, 2339–2346.

[71]

Zhang, X. H.; Liu, W.; Li, X. M.; Zhang, Z.; Shan, D. L.; Xia, H.; Zhang, S. T.; Lu, X. Q. Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal. Chem. 2018, 90, 14309–14315.

[72]

Ai, Y. J.; Sun, H.; Gao, Z. X.; Wang, C. L.; Guan, L. D.; Wang, Y.; Wang, Y. P.; Zhang, H. Y.; Liang, Q. L. Dual enzyme mimics based on metal-ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv. Funct. Mater. 2021, 31, 2103581.

[73]

Liang, H.; Lin, F. F.; Zhang, Z. J.; Liu, B. W.; Jiang, S. H.; Yuan, Q. P.; Liu, J. W. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360.

[74]

Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; Binks, B. P.; He, Z. M. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B: Environ. 2019, 254, 452–462.

[75]

Zhang, L.; Zhang, Y.; Wang, Z. Z.; Cao, F. F.; Sang, Y. J.; Dong, K.; Pu, F.; Ren, J. S.; Qu, X. G. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater. Horiz. 2019, 6, 1682–1687.

[76]

Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.; Liao, P. L.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W. et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 2015, 14, 512–516.

[77]

López-Maya, E.; Montoro, C.; Rodríguez-Albelo, L. M.; Aznar Cervantes, S. D.; Lozano-Pérez, A. A.; Cenís, J. L.; Barea, E.; Navarro, J. A. R. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew. Chem., Int. Ed. 2015, 54, 6790–6794.

[78]

Moon, S. Y.; Wagner, G. W.; Mondloch, J. E.; Peterson, G. W.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks. Inorg. Chem. 2015, 54, 10829–10833.

[79]

Li, P.; Klet, R. C.; Moon, S. Y.; Wang, T. C.; Deria, P.; Peters, A. W.; Klahr, B. M.; Park, H. J.; Al-Juaid, S. S.; Hupp, J. T. et al. Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulant. Chem. Commun. 2015, 51, 10925–10928.

[80]

Chen, H. Y.; Liao, P. L.; Mendonca, M. L.; Snurr, R. Q. Insights into catalytic hydrolysis of organophosphate warfare agents by metal-organic framework NU-1000. J. Phys. Chem. C 2018, 122, 12362–12368.

[81]

Park, H. J.; Jang, J. K.; Kim, S. Y.; Ha, J. W.; Moon, D.; Kang, I. N.; Bae, Y. S.; Kim, S.; Hwang, D. H. Synthesis of a Zr-based metal-organic framework with spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg. Chem. 2017, 56, 12098–12101.

[82]

Ai, Y. J.; You, J. Z.; Gao, J. Y.; Wang, J. P.; Sun, H. B.; Ding, M. Y.; Liang, Q. L. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 2021, 14, 2644–2653.

[83]

Kim, S.; Jee, S.; Choi, K. M.; Shin, D. S. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki–Miyaura cross coupling reactions in aqueous media. Nano Res. 2021, 14, 486–492.

[84]

Li, L. L.; Li, B.; Chen, D. M.; Zhao, J. C.; Yang, D. Q.; Ma, D. H.; Jiang, L.; Yang, Y. P.; Li, Y. Z.; Wang, J. Q. MOFzyme: FJU-21 with intrinsic high protease-like activity for hydrolysis of proteins. J. Biosci. Med. 2019, 7, 222–230.

[85]

Chen, J. X.; Huang, L.; Wang, Q. Q.; Wu, W. W.; Zhang, H.; Fang, Y. X.; Dong, S. J. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale 2019, 11, 5960–5966.

[86]

Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

[87]

Luo, L. P.; Huang, L. J.; Liu, X. N.; Zhang, W. T.; Yao, X. L.; Dou, L. N.; Zhang, X.; Nian, Y.; Sun, J.; Wang, J. L. Mixed-valence Ce-BPyDC metal-organic framework with dual enzyme-like activities for colorimetric biosensing. Inorg. Chem. 2019, 58, 11382–11388.

[88]

Li, X.; Zhou, H.; Qi, F.; Niu, X. H.; Xu, X. C.; Qiu, F. X.; He, Y. F.; Pan, J. M.; Ni, L. Three hidden talents in one framework: A terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J. Mater. Chem. B 2018, 6, 6207–6211.

[89]

Liu, K.; Zhang, M. X.; Du, X. X.; Zhou, A. Q.; Hui, B.; Xia, Y. Z.; Zhang, K. W. Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform. Nano Res. 2023, 16, 1296–1303.

[90]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Cover picture: Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts (Angew. Chem. Int. Ed. 41/2012). Angew. Chem., Int. Ed. 2012, 51, 10197.

[91]

Yu, G. X.; Song, X.; Zheng, S. J.; Zhao, Q.; Yan, D. T.; Zhao, J. S. A facile and sensitive tetrabromobisphenol-A sensor based on biomimetic catalysis of a metal-organic framework: PCN-222(Fe). Anal. Methods 2018, 10, 4275–4281.

[92]

Aghayan, M.; Mahmoudi, A.; Nazari, K.; Dehghanpour, S.; Sohrabi, S.; Sazegar, M. R.; Mohammadian-Tabrizi, N. Fe(III) porphyrin metal-organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. J. Porous Mater. 2019, 26, 1507–1521.

[93]

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

[94]

Wang, Y.; Zhu, Y. J.; Binyam, A.; Liu, M. S.; Wu, Y. N.; Li, F. T. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438.

[95]

Yuan, H. Y.; Zvonkina, I. J.; Al-Enizi, A. M.; Elzatahry, A. A.; Pyun, J.; Karim, A. Facile assembly of aligned magnetic nanoparticle chains in polymer nanocomposite films by magnetic flow coating. ACS Appl. Mater. Interfaces 2017, 9, 11290–11298.

[96]

Wang, C. H.; Gao, J.; Cao, Y. L.; Tan, H. L. Colorimetric logic gate for alkaline phosphatase based on copper(II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta 2018, 1004, 74–81.

[97]

Liu, J.; Yuan, Y.; Cheng, Y. N.; Fu, D. A.; Chen, Z. Y.; Wang, Y.; Zhang, L. F.; Yao, C. D.; Shi, L.; Li, M. Y. et al. Copper-based metal-organic framework overcomes cancer chemoresistance through systemically disrupting dynamically balanced cellular redox homeostasis. J. Am. Chem. Soc. 2022, 144, 4799–4809.

[98]

Junk, P.; Humphrey, M.; Koutsantonis, G. Editorial. Coord. Chem. Rev. 2018, 375, 1.

[99]

Wang, C.; Liu, X. M.; Zhang, M.; Geng, Y.; Zhao, L.; Li, Y. G.; Su, Z. M. Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: A computational study. ACS Sustainable Chem. Eng. 2019, 7, 14102–14110.

[100]

Xie, Y. L.; Wang, M.; Sun, Q. Q.; Wang, D. M.; Li, C. X. Recent advances in tetrakis (4-carboxyphenyl) porphyrin-based nanocomposites for tumor therapy. Adv. Nanobiomed Res. 2023, 3, 2200136.

[101]

Liang, Y. H.; Shang, R.; Lu, J. R.; Liu, L.; Hu, J. S.; Cui, W. Q. Ag3PO4@UMOFNs core–shell structure: Two-dimensional MOFs promoted photoinduced charge separation and photocatalysis. ACS Appl. Mater. Interfaces 2018, 10, 8758–8769.

[102]

Tan, S. Y.; Long, Y.; Han, Q.; Guan, H. Y.; Liang, Q. L.; Ding, M. Y. Designed fabrication of polymer-mediated MOF-derived magnetic hollow carbon nanocages for specific isolation of bovine hemoglobin. ACS Biomater. Sci. Eng. 2020, 6, 1387–1396.

[103]

Hu, M. Q.; Lou, H.; Yan, X. L.; Hu, X. Y.; Feng, R.; Zhou, M. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2018, 271, 68–72.

[104]

Khoobi, A.; Salavati-Niasari, M.; Ghani, M.; Ghoreishi, S. M.; Gholami, A. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nano sorbent for stir bar sorptive extraction in biological and food samples. Food Chem. 2019, 288, 39–46.

[105]

Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res. 2021, 14, 507–511.

[106]

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-NP Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

[107]

Hu, S. S.; Yan, J. J.; Huang, X. M.; Guo, L. H.; Lin, Z. Y.; Luo, F.; Qiu, B.; Wong, K. Y.; Chen, G. N. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B: Chem. 2018, 267, 312–319.

[108]

Shi, M. Y.; Xu, M.; Gu, Z. Y. Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal. Chim. Acta 2019, 1079, 164–170.

[109]

Chen, H. Y.; Qiu, Q. M.; Sharif, S.; Ying, S. N.; Wang, Y. X.; Ying, Y. B. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces 2018, 10, 24108–24115.

[110]

Chen, J. Y.; Shu, Y.; Li, H. L.; Xu, Q.; Hu, X. Y. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 2018, 189, 254–261.

[111]

Qin, L.; Wang, X. Y.; Liu, Y. F.; Wei, H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal. Chem. 2018, 90, 9983–9989.

[112]

Wang, X. Y.; Jiang, X. Q.; Wei, H. Phosphate-responsive 2D-metal-organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J. Mater. Chem. B 2020, 8, 6905–6911.

[113]

Chen, J. Y.; Xu, Q.; Shu, Y.; Hu, X. Y. Synthesis of a novel Au nanoparticle decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytics performance for the detection of glucose in human serum. Talanta 2018, 184, 136–142.

[114]

Yan, R.; Zhao, Y.; Yang, H.; Kang, X. J.; Wang, C.; Wen, L. L.; Lu, Z. D. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 2018, 28, 1802021.

[115]

Tan, B.; Zhao, H. M.; Wu, W. H.; Liu, X.; Zhang, Y. B.; Quan, X. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 2017, 9, 18699–18710.

[116]

Tao, Y.; Chang, Q.; Liu, Q. H.; Guan, H. T.; Yang, G. L.; Lang, R. F.; Chen, G.; Dong, C. J. In situ fabrication of Ni(OH)2 nanoflakes/K-Ti-O nanowires on NiTi foil for high performance non-enzymatic hydrogen peroxide sensing. J. Electroanal. Chem. 2019, 842, 107–114.

[117]

Zhai, M. K.; Wang, F.; Du, H. B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Appl. Mater. Interfaces 2017, 9, 40171–40179.

[118]

Zhang, X. L.; Zhang, F.; Lu, Z.; Xu, Q.; Hou, C. T.; Wang, Z. H. Coupling two sequential biocatalysts with close proximity into metal-organic frameworks for enhanced cascade catalysis. ACS Appl. Mater. Interfaces 2020, 12, 25565–25571.

[119]

Zhou, B. S.; Sun, X. L.; Dong, B.; Yu, S. Y.; Cheng, L.; Hu, S. T.; Liu, W.; Xu, L.; Bai, X.; Wang, L. et al. Antibacterial PDT nano platform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 2022, 12, 2580–2597.

[120]

Fang, J.; Wan, Y.; Sun, Y.; Sun, X. L.; Qi, M. L.; Cheng, S.; Li, C. Y.; Zhou, Y. M.; Xu, L.; Dong, B. et al. Near-infrared-activated nanohybrid coating with black phosphorus/zinc oxide for efficient biofilm eradication against implant-associated infections. Chem. Eng. J. 2022, 435, 134935.

[121]

Zhang, X. R.; Dong, B.; Liu, W.; Zhou, X. Y.; Liu, M.; Sun, X. K.; Lv, J. K.; Zhang, L. L.; Xu, W.; Bai, X. et al. Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuators B: Chem. 2020, 320, 128405.

[122]

Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

[123]

Li, Y. Z.; Li, T. T.; Chen, W.; Song, Y. Y. Co4N nanowires: Noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl. Mater. Interfaces 2017, 9, 29881–29888.

[124]

Jiang, Z. W.; Gao, P. F.; Yang, L.; Huang, C. Z.; Li, Y. F. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine. Anal. Chem. 2015, 87, 12177–12182.

[125]

Shen, W. J.; Zhuo, Y.; Chai, Y. Q.; Yuan, R. Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosens. Bioelectron. 2016, 83, 287–292.

[126]

Wang, S. M.; Hwang, J.; Kim, E. Polyoxometalates as promising materials for electrochromic devices. J. Mater. Chem. C 2019, 7, 7828–7850.

[127]

Yang, Y.; Yang, Z. H.; Lv, J. J.; Yuan, R.; Chai, Y. Q. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta 2017, 169, 44–49.

[128]

Li, H. P.; Liu, H. F.; Zhang, J. D.; Cheng, Y. X.; Zhang, C. L.; Fei, X. Y.; Xian, Y. Z. Platinum nanoparticle encapsulated metal-organic frameworks for colorimetric measurement and facile removal of mercury(II). ACS Appl. Mater. Interfaces 2017, 9, 40716–40725.

[129]

Zhang, Y. M.; Song, J.; Pan, Q. L.; Zhang, X.; Shao, W. H.; Zhang, X.; Quan, C. S.; Li, J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+. J. Mater. Chem. B 2020, 8, 114–124.

[130]

Wang, X. L.; Wang, H.; Guo, L.; Chen, G.; Kong, R. M.; Qu, F. L.; Xia, L. Colorimetric detection of Hg(II) based on the gold amalgam-triggered reductase mimetic activity in aqueous solution by employing AuNP@MOF nanoparticles. Analyst 2020, 145, 1362–1367.

[131]

Chong, G. W.; Zang, J.; Han, Y.; Su, R. P.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Res. 2021, 14, 1244–1259.

[132]

Chen, X. H.; Zhao, L. F.; Wu, K. Q.; Yang, H.; Zhou, Q.; Xu, Y.; Zheng, Y. J.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chem. Sci. 2021, 12, 8865–8871.

[133]

Yang, L.; Wang, Z.; Gong, H. J.; Gai, S. L.; Shen, R. F. Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy. J. Colloid Interface Sci. 2023, 634, 495–508.

[134]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[135]

Zhao, W. J.; Yu, C. Y.; Zhao, J.; Chen, F. Q.; Guan, X. Y.; Li, H.; Tang, B.; Yu, G. T.; Valtchev, V.; Yan, Y. S. et al. 3D hydrazone-functionalized covalent organic frameworks as pH-triggered rotary switches. Small 2021, 7, 2102630.

[136]

Sun, Y.; Sun, X. L.; Li, X.; Li, W.; Li, C. Y.; Zhou, Y. M.; Wang, L.; Dong, B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2021, 268, 120614.

[137]

Sun, L. H.; Liu, J. S.; Xu, S. H.; Dong, B.; Lv, J. K.; Hu, S. T.; Zhou, B. S.; Shen, B.; Wang, Y. Q.; Xu, L. et al. High fluorescence LaOBr/coumarin organic–inorganic composite nanomaterials for ultra-sensitive Fe3+ sensing, fluorescence imaging, and water-based ink anti-counterfeiting applications. J. Mater. Chem. C 2020, 8, 13733–13742.

[138]

Liu, J. S.; Guo, Y.; Dong, B.; Sun, J.; Lyu, J.; Sun, L. H.; Hu, S. T.; Xu, L.; Bai, X.; Xu, W. et al. Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sens. Actuators B: Chem. 2020, 320, 128361.

[139]

Li, X.; Qi, M. L.; Sun, X. L.; Weir, M. D.; Tay, F. R.; Oates, T. W.; Dong, B.; Zhou, Y. M.; Wang, L.; Xu, H. H. K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019, 94, 627–643.

[140]

Xu, H. W.; Dong, B.; Xu, S. H.; Xu, S.; Sun, X. K.; Sun, J.; Yang, Y. D.; Xu, L.; Bai, X.; Zhang, S. et al. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites. Biomaterials 2017, 138, 69–79.

[141]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotech. 2007, 2, 577–583.

[142]

Zhang, L. H.; Dong, B.; Xu, L.; Zhang, X. R.; Chen, J. J.; Sun, X. K.; Xu, H. W.; Zhang, T. X.; Bai, X.; Zhang, S. et al. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens. Actuators B: Chem. 2017, 252, 367–374.

[143]

Zhang, L. P.; Montesdeoca, N.; Karges, J.; Xiao, H. H. Immunogenic cell death inducing metal complexes for cancer therapy. Angew. Chem., Int. Ed., 2023, 62, e2023006.

[144]

Liu, Q. W.; Zhang, A. M.; Wang, R. H.; Zhang, Q.; Cui, D. X. A review on metal- and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nanomicro Lett. 2021, 13, 1–53.

[145]

Tang, X. Q.; Zhang, Y. D.; Jiang, Z. W.; Wang, D. M.; Huang, C. Z.; Li, Y. F. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose. Talanta 2018, 179, 43–50.

[146]

Zhang, Y. S.; Hu, Y. F.; Li, G. K.; Zhang, R. K. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchim. Acta 2019, 186, 477.

[147]

Cui, Y. X.; Rimoldi, M.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Stabilizing a vanadium oxide catalyst by supporting on a metal-organic framework. ChemCatChem 2018, 10, 1772–1777.

[148]

Yin, S. Y.; Song, G. S.; Yang, Y.; Zhao, Y.; Wang, P.; Zhu, L. M.; Yin, X.; Zhang, X. B. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal-organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1901417.

[149]

Liu, J. T.; Ye, L. Y.; Xiong, W. H.; Liu, T. R.; Yang, H.; Lei, J. P. A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun. 2021, 57, 2820–2823.

[150]

Zhang, L. P.; Wang, Y. Q.; Karges, J.; Tang, D. S.; Zhang, H. C.; Zou, K. X.; Song, J.; Xiao, H. H. Tetrahedral DNA nanostructure with interferon stimulatory DNA delivers highly potent toxins and activates the cGAS-STING pathway for robust chemotherapy and immunotherapy. Adv. Mater. 2022, 35, 2210267.

[151]

Ahn, D. H.; Jeong, J. H.; Song, J.; Lee, J. Y.; Kwon, J. H. Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization. ACS Appl. Mater. Interfaces 2018, 10, 10246–10253.

[152]

Liu, J. T.; Córdova Wong, B. J.; Liu, T. R.; Yang, H.; Yao Ye, L.; Lei, J. P. Glutathione-responsive heterogeneous metal-organic framework hybrids for photodynamic–gene synergetic cell apoptosis. Chem.—Eur. J. 2022, 28, e202200305.

[153]

Lu, J.; Hu, Y. H.; Wang, P. X.; Liu, P. Q.; Chen, Z. G.; Sun, D. P. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B: Chem. 2020, 311, 127909.

[154]

Zheng, Y. H.; Rong, J.; Xu, J. C.; Zhu, Y.; Zhang, T.; Yang, D. Y.; Qiu, F. X. Accessible active sites activated by cobalt-doping into MoS2/NiS2 nanosheet array electrocatalyst for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 2021, 563, 150385.

[155]

Dong, W. F.; Chen, G.; Hu, X.; Zhang, X. D.; Shi, W. B.; Fu, Z. F. Molybdenum disulfides nanoflowers anchoring iron-based metal organic framework: A synergetic catalyst with superior peroxidase-mimicking activity for biosensing. Sens. Actuators B: Chem. 2020, 305, 127530.

[156]

Lang, Z. Q.; Song, G. L.; Wu, P. P.; Zheng, D. J. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res. 2023, 16, 2224–2229.

[157]

Xiong, Y. H.; Su, L. J.; Yang, H. G.; Zhang, P.; Ye, F. G. Fabrication of copper sulfide using a Cu-based metal organic framework for the colorimetric determination and the efficient removal of Hg2+ in aqueous solutions. New J. Chem. 2015, 39, 9221–9227.

[158]

Zhang, X. X.; Zhang, W. J.; Li, G.; Liu, Q. Q.; Xu, Y. S.; Liu, X. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridine dicarboxylic acid based on a terbium(III)- functionalized UIO-67 metal-organic framework. Microchim. Acta 2020, 187, 122.

[159]

Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.

[160]

Li, W.; Qi, M. L.; Sun, X. L.; Chi, M. H.; Wan, Y.; Zheng, X. F.; Li, C. Y.; Wang, L.; Dong, B. Novel dental adhesive containing silver exchanged EMT zeolites against cariogenic biofilms to combat dental caries. Microporous Mesoporous Mater. 2020, 299, 110113.

[161]

Sun, X. K.; Sun, J.; Dong, B.; Huang, G. S.; Zhang, L.; Zhou, W. H.; Lv, J. K.; Zhang, X. R.; Liu, M.; Xu, L. et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 2019, 201, 42–52.

[162]

Liu, J. T.; Huang, J.; Zhang, L.; Lei, J. P. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 1188–1218.

[163]

Zhou, X. D.; Zhao, B.; Lv, H. L. Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation. Nano Res. 2023, 16, 70–79.

[164]

Zhang, J. B.; Han, J. W.; Li, H.; Li, Z. Y.; Zou, P. F.; Li, J. X.; Zhao, T.; Che, J. W.; Yang, Y.; Yang, M. Y. et al. Lymphocyte membrane-and 12p1-dual-functionalized nanoparticles for free HIV-1 trapping and precise siRNA delivery into HIV-1-infected cells. Adv. Sci. 2023, 10, 2300282.

[165]

Chen, W. H.; Vázquez-González, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+-modified metal-organic framework nanoparticles: A peroxidase-mimicking nanoenzyme. Small 2018, 14, 1703149.

[166]

Chen, W. F.; Liu, S. Y.; Fu, Y. K.; Yan, H. C.; Qin, L.; Lai, C.; Zhang, C.; Ye, H. Y.; Chen, W. J.; Qin, F. Z. et al. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord. Chem. Rev. 2022, 454, 214341.

[167]

An, H. D.; Li, M. M.; Gao, J.; Zhang, Z. J.; Ma, S. Q.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106.

[168]

Tang, D. S.; Yu, Y. J.; Zhang, J. B.; Dong, X. Y.; Liu, C. Y.; Xiao, H. H. Self-sacrificially degradable pseudo-semiconducting polymer nanoparticles that integrate NIR-II fluorescence bioimaging, photodynamic immunotherapy, and photo-activated chemotherapy. Adv. Mater. 2022, 34, 2203820.

[169]

Cheng, S.; Qi, M. L.; Li, W.; Sun, W. Y.; Li, M. Q.; Lin, J. Y.; Bai, X.; Sun, Y.; Dong, B.; Wang, L. Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv. Healthc. Mater. 2022, 12, 2202652.

[170]

Wang, K. C.; Feng, D. W.; Liu, T. F.; Su, J.; Yuan, S.; Chen, Y. P.; Bosch, M.; Zou, X. D.; Zhou, H. C. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 2014, 136, 13983–13986.

[171]

Lian, X. Z.; Chen, Y. P.; Liu, T. F.; Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969–6973.

[172]

Jin, T.; Li, Y. L.; Jing, W. J.; Li, Y. C.; Fan, L. Z.; Li, X. H. Cobalt-based metal organic frameworks: A highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem. Commun. 2020, 56, 659–662.

[173]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[174]

Zhou, Y. Z.; Yang, T.; Liang, K.; Chandrawati, R. Metal-organic frameworks for therapeutic gas delivery. Adv. Drug Deliv. Rev. 2021, 171, 199–214.

[175]

Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

[176]

Gao, Z. G.; Li, Y. J.; Zhang, Y.; Cheng, K. W.; An, P. J.; Chen, F. H.; Chen, J.; You, C. Q.; Zhu, Q.; Sun, B. W. Biomimetic platinum nanozyme immobilized on 2D metal-organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 1963–1972.

[177]

Yuan, A.; Lu, Y. W.; Zhang, X. D.; Chen, Q. M.; Huang, Y. M. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J. Mater. Chem. B 2020, 8, 9295–9303.

[178]

Zhang, Y.; Dai, C. L.; Liu, W.; Wang, Y. Y.; Ding, F.; Zou, P.; Wang, X. X.; Zhao, Q. B.; Rao, H. B. Ultrathin films of a metal-organic framework prepared from 2-methylimidazole, manganese(II) and cobalt(II) with strong oxidase-mimicking activity for colorimetric determination of glutathione and glutathione reductase activity. Microchim. Acta 2019, 186, 340.

[179]

Zhang, X. L.; Li, G. L.; Wu, D.; Li, X. L.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. N. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 2019, 137, 178–198.

[180]

Wang, Y.; Feng, L.; Pang, J. D.; Li, J. L.; Huang, N.; Day, G. S.; Cheng, L.; Drake, H. F.; Wang, Y.; Lollar, C. et al. Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production. Adv. Sci. 2019, 6, 1802059.

[181]

Wang, J. N.; Wei, T. X.; Liu, Y. C.; Bao, M. Y.; Feng, R.; Qian, Y. X.; Yang, X.; Si, L.; Dai, Z. H. Colloidal-sized zirconium porphyrin metal-organic frameworks with improved peroxidase-mimicking catalytic activity, stability and dispersity. Analyst 2020, 145, 3002–3008.

[182]

Pan, Y. D.; Pang, Y. J.; Shi, Y.; Zheng, W.; Long, Y. J.; Huang, Y. M.; Zheng, H. Z. One-pot synthesis of a composite consisting of the enzyme ficin and a zinc(II)-2-methylimidazole metal organic framework with enhanced peroxidase activity for colorimetric detection for glucose. Microchim. Acta 2019, 186, 213.

[183]

Kong, W. S.; Guo, X. X.; Jing, M.; Qu, F. L.; Lu, L. M. Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS2 nanorod array as signal matrix and Ag/ZnMOF nanozyme as multifunctional amplifier. Biosens. Bioelectron. 2020, 150, 111875.

[184]

Zhang, T. T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X. Y.; Lu, N. N.; Liu, H.; Xu, Z. Q.; Xu, H. X.; Zhang, Z. Q. et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 2019, 91, 10589–10595.

[185]

Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472–16475.

[186]

Hassan, M. H.; Andreescu, D.; Andreescu, S. Cerium oxide nanoparticles stabilized within metal-organic frameworks for the degradation of nerve agents. ACS Appl. Nano Mater. 2020, 3, 3288–3294.

[187]

Liu, J.; Zhang, W.; Peng, M. H.; Ren, G. Y.; Guan, L. H.; Li, K.; Lin, Y. Q. ZIF-67 as a template generating and tuning “raisin pudding”-type nanozymes with multiple enzyme-like activities: Toward online electrochemical detection of 3,4-dihydroxyphenylacetic acid in living brains. ACS Appl. Mater. Interfaces 2020, 12, 29631–29640.

[188]

Zhao, Z. H.; Lin, T. R.; Liu, W. R.; Hou, L.; Ye, F. G.; Zhao, S. L. Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 240–247.

[189]

Liu, T. T.; Tian, J.; Cui, L.; Liu, Q. Y.; Wu, L. L.; Zhang, X. M. Facile strategy to prepare a metalloporphyrin-based hydrophilic porous organic polymer with enhanced peroxidase-like activity and high stability for colorimetric detection of H2O2 and glucose. Colloids Surf. B: Biointerfaces 2019, 178, 137–145.

[190]

Song, C.; Ding, W.; Liu, H. B.; Zhao, W. W.; Yao, Y. W.; Yao, C. Label-free colorimetric detection of deoxyribonuclease I activity based on the DNA-enhanced peroxidase-like activity of MIL-53(Fe). New J. Chem. 2019, 43, 12776–12784.

[191]

de S Pessôa, G.; Júnior, C. A. L.; Madrid, K. C.; Arruda, M. A. Z. A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds. Talanta 2017, 167, 317–324.

[192]

Alsharabasy, A. M.; Pandit, A.; Farràs, P. Recent advances in the design and sensing applications of hemin/coordination polymer-based nanocomposites. Adv. Mater. 2021, 33, 2003883.

[193]

Zheng, H. Q.; Liu, C. Y.; Zeng, X. Y.; Chen, J.; Lü, J.; Lin, R. G.; Cao, R.; Lin, Z. J.; Su, J. W. MOF-808: A metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 2018, 57, 9096–9104.

[194]

Alizadeh, N.; Salimi, A.; Hallaj, R.; Fathi, F.; Soleimani, F. Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: Toward colorimetric cancer cell detection and targeted therapeutics. J. Nanobiotechnol. 2018, 16, 93.

[195]

Wang, C. H.; Gao, J.; Tan, H. L. Integrated antibody with catalytic metal-organic framework for colorimetric immunoassay. ACS Appl. Mater. Interfaces 2018, 10, 25113–25120.

[196]

Sun, Z. W.; Wu, S.; Ma, J. H.; Shi, H.; Wang, L.; Sheng, A. Z.; Yin, T. T.; Sun, L. Z.; Li, G. X. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 36316–36323.

[197]

Luo, Z. B.; Sun, D. P.; Tong, Y. L.; Zhong, Y. S.; Chen, Z. G. DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchim. Acta 2019, 186, 374.

[198]

Tian, J. J.; Liang, Z. X.; Hu, O.; He, Q. D.; Sun, D. P.; Chen, Z. G. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim. Acta 2021, 387, 138553.

[199]

Hu, M.; Zhu, L.; Li, Z. Z.; Guo, C. P.; Wang, M. H.; Wang, C. B.; Du, M. CoNi bimetallic metal-organic framework as an efficient biosensing platform for miRNA 126 detection. Appl. Surf. Sci. 2021, 542, 148586.

[200]

Li, Y.; Hu, M. Y.; Huang, X. Y.; Wang, M. H.; He, L. H.; Song, Y. P.; Jia, Q. J.; Zhou, N.; Zhang, Z. H.; Du, M. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens. Actuators B: Chem. 2020, 306, 127608.

[201]

Bao, T.; Fu, R. B.; Wen, W.; Zhang, X. H.; Wang, S. F. Target-driven cascade-amplified release of loads from DNA-gated metal-organic frameworks for electrochemical detection of cancer biomarker. ACS Appl. Mater. Interfaces 2020, 12, 2087–2094.

[202]

Li, Y. L.; Yu, C.; Yang, B.; Liu, Z. R.; Xia, P. Y.; Wang, Q. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron. 2018, 102, 307–315.

[203]

Hu, S. S.; Zhu, L.; Lam, C. W.; Guo, L. H.; Lin, Z. Y.; Qiu, B.; Wong, K. Y.; Chen, G. N.; Liu, Z. H. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Microchim. Acta 2019, 186, 190.

[204]

Tan, H. L.; Li, Q.; Zhou, Z. C.; Ma, C. J.; Song, Y. H.; Xu, F. G.; Wang, L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta 2015, 856, 90–95.

[205]

Feng, L. P.; Liu, M.; Liu, H.; Fan, C.; Cai, Y. Y.; Chen, L. J.; Zhao, M. L.; Chu, S.; Wang, H. High-throughput and sensitive fluorimetric strategy for microRNAs in blood using wettable microwells array and silver nanoclusters with red fluorescence enhanced by metal organic frameworks. ACS Appl. Mater. Interfaces 2018, 10, 23647–23656.

[206]

He, Y.; Wang, Y.; Yang, X.; Xie, S. B.; Yuan, R.; Chai, Y. Q. Metal-organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl. Mater. Interfaces 2016, 8, 7683–7690.

[207]

Chen, X. J.; Qin, L. X.; Kang, S. Z.; Li, X. Q. A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Appl. Surf. Sci. 2021, 550, 149302.

[208]

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

[209]

Wu, C. J.; Wang, S. F.; Luo, X. L.; Yuan, R.; Yang, X. Adenosine triphosphate responsive metal-organic frameworks equipped with a DNA structure lock for construction of a ratiometric SERS biosensor. Chem. Commun. 2020, 56, 1413–1416.

[210]

Cai, Y. Z.; Wu, Y. P.; Xuan, T.; Guo, X. Y.; Wen, Y.; Yang, H. F. Core–shell Au@metal-organic frameworks for promoting Raman detection sensitivity of methenamine. ACS Appl. Mater. Interfaces 2018, 10, 15412–15417.

[211]

Yan, Z. Y.; Wang, F.; Deng, P. Y.; Wang, Y.; Cai, K.; Chen, Y. H.; Wang, Z. H.; Liu, Y. Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of Au and Pt loaded metal-organic frameworks nanocomposites. Biosens. Bioelectron. 2018, 109, 132–138.

[212]

Luo, F. Q.; Lin, Y. L.; Zheng, L. Y.; Lin, X. M.; Chi, Y. W. Encapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition. ACS Appl. Mater. Interfaces 2015, 7, 11322–11329.

[213]

Li, H. D.; Sun, Y.; Li, Y. H.; Du, J. X. Alkaline phosphatase activity assay with luminescent metal organic frameworks-based chemiluminescent resonance energy transfer platform. Microchem. J. 2021, 160, 105665.

[214]

Bai, W. Q.; Cui, A. P.; Liu, M. Z.; Qiao, X. Z.; Li, Y.; Wang, T. Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metal-organic frameworks for the detection of methylated RNA. Anal. Chem. 2019, 91, 11840–11847.

[215]

Sun, Y.; Xu, X. T.; Zhao, Y. X.; Tan, H. N.; Li, Y. H.; Du, J. X. Luminescent metal organic frameworks-based chemiluminescence resonance energy transfer platform for turn-on detection of fluoride ion. Talanta 2020, 209, 120582.

[216]

Han, R.; Sun, Y. L.; Lin, Y. N.; Liu, H.; Dai, Y. X.; Zhu, X. D.; Gao, D. D.; Wang, X. Y.; Luo, C. N. A simple chemiluminescent aptasensor for the detection of α-fetoprotein based on iron-based metal organic frameworks. New J. Chem. 2020, 44, 4099–4107.

[217]

Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.

[218]

Bai, H. S.; Bu, S. J.; Wang, C. Y.; Ma, C. Y.; Li, Z. Y.; Hao, Z.; Wan, J. Y.; Han, Y. Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout. Microchim. Acta 2020, 187, 220.

[219]

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.

[220]

Zhong, X.; Xia, H.; Huang, W. Q.; Li, Z. X.; Jiang, Y. B. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758.

[221]

Zhang, Q.; Zhang, F. X.; Yu, L.; Kang, Q.; Chen, Y. Q.; Shen, D. Z. A differential photoelectrochemical method for glucose determination based on alkali-soaked zeolite imidazole framework-67 as both glucose oxidase and peroxidase mimics. Microchim. Acta 2020, 187, 244.

[222]

Zhang, J. Y.; Liu, J. W. Nanozyme-based luminescence detection. Luminescence 2020, 35, 1185–1194.

[223]

Chen, W. H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695.

[224]

Hamblin, M. R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124.

[225]

Wang, J.; Hu, Y. Y.; Zhou, Q.; Hu, L. Z.; Fu, W. S.; Wang, Y. Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl. Mater. Interfaces 2019, 11, 44466–44473.

[226]

Liang, L.; Huang, Y. J.; Liu, W. R.; Zuo, W. Y.; Ye, F. G.; Zhao, S. L. Colorimetric detection of salicylic acid in aspirin using MIL-53(Fe) nanozyme. Front. Chem. 2020, 8, 671.

[227]

Valekar, A. H.; Batule, B. S.; Kim, M. I.; Cho, K. H.; Hong, D. Y.; Lee, U. H.; Chang, J. S.; Park, H. G.; Hwang, Y. K. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens. Bioelectron. 2018, 100, 161–168.

[228]

Guo, J. J.; Wu, S.; Wang, Y.; Zhao, M. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens. Actuators B: Chem. 2020, 312, 128021.

[229]

Hassanzadeh, J.; Khataee, A.; Eskandari, H. Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol. Sens. Actuators B: Chem. 2018, 259, 402–410.

[230]

Wang, S. Q.; Deng, W. F.; Yang, L.; Tan, Y. M.; Xie, Q. J.; Yao, S. Z. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 24440–24445.

[231]

Cheng, N.; Zhu, C. Z.; Wang, Y. L.; Du, D.; Zhu, M. J.; Luo, Y. B.; Xu, W. T.; Lin, Y. H. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of Salmonella enteritidis. J. Anal. Test. 2019, 3, 99–106.

[232]

Wang, C. H.; Tang, G.; Tan, H. L. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim. Acta 2018, 185, 475.

[233]

Li, C. R.; Hai, J.; Fan, L.; Li, S. L.; Wang, B. D.; Yang, Z. Y. Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens. Actuators B: Chem. 2019, 284, 213–219.

[234]

Vickers, N. J. Animal communication: When I’m calling you, will you answer too. Curr. Biol. 2017, 27, R713–R715.

[235]

Daaboul, G. G.; Vedula, R. S.; Ahn, S.; Lopez, C. A.; Reddington, A.; Ozkumur, E.; Ünlü, M. S. LED-based Interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions. Biosens. Bioelectron. 2011, 26, 2221–2227.

[236]

Li, S. Q.; Hu, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens. Bioelectron. 2019, 137, 133–139.

[237]

Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B: Chem 2020, 305, 127511.

[238]

Li, X. Y.; Li, X. M.; Li, D. D.; Zhao, M.; Wu, H. P.; Shen, B.; Liu, P.; Ding, S. J. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens. Bioelectron. 2020, 168, 112554.

[239]

Sun, D. P.; Luo, Z. B.; Lu, J.; Zhang, S. S.; Che, T.; Chen, Z. G.; Zhang, L. Y. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron. 2019, 134, 49–56.

[240]

Ling, P. H.; Qian, C. H.; Yu, J. J.; Gao, F. Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosens. Bioelectron. 2020, 149, 111838.

[241]

Jangi, S. R. H.; Akhond, M. Synthesis and characterization of a novel metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) and its application for constructing a reusable nanozyme-based sensor for selective and sensitive glutathione quantification. Microchem. J. 2020, 158, 105328.

[242]

Wu, Y. Z.; Ma, Y. J.; Xu, G. H.; Wei, F. D.; Ma, Y. S.; Song, Q.; Wang, X.; Tang, T.; Song, Y. Y.; Shi, M. L. et al. Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens. Actuators B: Chem. 2017, 249, 195–202.

[243]

Zhao, C.; Jiang, Z. W.; Mu, R. Z.; Li, Y. F. A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system. Talanta 2016, 159, 365–370.

[244]

Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem.—Eur. J. 2014, 20, 16377–16383.

[245]

Hou, L.; Qin, Y. M.; Lin, T. R.; Sun, Y.; Ye, F. G.; Zhao, S. L. Michael reaction-assisted fluorescent sensor for selective and one step determination of catechol via bifunctional Fe-MIL-88NH2 nanozyme. Sens. Actuators B: Chem. 2020, 321, 128547.

[246]

Zhang, Y. M.; Song, J.; Shao, W. H.; Li, J. Au@NH2-MIL-125(Ti) heterostructure as light-responsive oxidase-like mimic for colorimetric sensing of cysteine. Microporous Mesoporous Mater. 2021, 310, 110642.

[247]

Wang, Y. F. Disparities in pediatric obesity in the United States. Adv. Nutr. 2011, 2, 23–31.

[248]

Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147.

[249]

Chen, B. J.; Zhang, Y. S.; Lin, L.; Chen, H.; Zhao, M. J. Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J. Electroanal. Chem. 2020, 863, 114052.

[250]

Gill, A. A. S.; Singh, S.; Agrawal, N.; Nate, Z.; Chiwunze, T. E.; Thapliyal, N. B.; Chauhan, R.; Karpoormath, R. A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim. Acta 2020, 187, 79.

[251]

Zhang, J. J.; Liu, J.; Zhang, Y.; Yu, F.; Wang, F.; Peng, Z. C.; Li, Y. C. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Microchim. Acta 2018, 185, 78.

[252]

Chen, H.; Wu, X. X.; Zhao, R.; Zheng, Z.; Yuan, Q. H.; Dong, Z. J.; Gan, W. Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Microchim. Acta 2019, 186, 623.

[253]

Xiao, L. L.; Xu, R. Y.; Yuan, Q. H.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017, 167, 39–43.

[254]

Fu, K. X.; Zhang, R. L.; He, J. C.; Bai, H. P.; Zhang, G. L. Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens. Bioelectron. 2019, 143, 111636.

[255]

Wang, J. J.; Zhao, J. H.; Yang, J.; Cheng, J.; Tan, Y. Z.; Feng, H. H.; Li, Y. C. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Microchim. Acta 2020, 187, 380.

[256]

Feng, X. G.; Lin, S. R.; Li, M.; Bo, X. J.; Guo, L. P. Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Anal. Chim. Acta 2017, 984, 96–106.

[257]

Peng, Z. W.; Jiang, Z. W.; Huang, X.; Li, Y. F. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal-organic framework composite modified glassy carbon electrode. RSC Adv. 2016, 6, 13742–13748.

[258]

Wu, X. Q.; Feng, P. Q.; Guo, Z. Q.; Wei, X. H. Water-stable 1D double-chain Cu metal-organic framework-based electrochemical biosensor for detecting L-tyrosine. Langmuir 2020, 36, 14123–14129.

[259]

Kishioka, S. Y.; Yamada, A. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry. J. Electroanal. Chem. 2005, 578, 71–77.

[260]

Zhai, X. R.; Li, S.; Chen, X.; Hua, Y.; Wang, H. Coating silver metal-organic frameworks onto nitrogen-doped porous carbons for the electrochemical sensing of cysteine. Microchim. Acta 2020, 187, 493.

[261]

Zhang, Q. B.; Song, K.; Zhao, J. W.; Kong, X. G.; Sun, Y. J.; Liu, X. M.; Zhang, Y. L.; Zeng, Q. H.; Zhang, H. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4: Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J. Colloid Interface Sci. 2009, 336, 171–175.

[262]

Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

[263]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem. 2020, 132, 2585–2596.

[264]

Wu, J. J. X.; Li, S. R.; Wei, H. Multifunctional nanozymes: Enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz. 2018, 3, 367–382.

[265]

Li, X.; Wang, L. J.; Du, D.; Ni, L.; Pan, J. M.; Niu, X. H. Emerging applications of nanozymes in environmental analysis: Opportunities and trends. Trends Analyt. Chem. 2019, 120, 115653.

[266]

Gooding, J. J. Can nanozymes have an impact on sensing? ACS Sens. 2019, 4, 2213–2214.

[267]

Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.

Nano Research
Pages 39-64
Cite this article:
Chandio I, Ai Y, Wu L, et al. Recent progress in MOFs-based nanozymes for biosensing. Nano Research, 2024, 17(1): 39-64. https://doi.org/10.1007/s12274-023-5770-3
Topics:

1905

Views

17

Crossref

19

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 22 February 2023
Revised: 11 April 2023
Accepted: 23 April 2023
Published: 06 July 2023
© Tsinghua University Press 2023
Return