Journal Home > Volume 16 , Issue 8

Anesthetic residues in fish represent a potential risk to human health. Therefore, it is important to develop a sensitive and broad-specific method for the detection of anesthetics. In this study, we developed a colloidal gold-based quadruplex immunochromatographic (Qua-ICS) assay using four highly sensitive monoclonal antibody immunotherapy (mAbs) that simultaneously detected 11 anesthetic residues in fish within 10 min. The colorimetric and cut-off values (COVs) for procaines, eugenols, bupivacaines, and tricaine (TMS) were 0.37–1.1 and 3.3–10, 11–222 and 100–2000, 0.37 and 3.3, and 111 and 10,000 µg/kg, respectively. Quantitative analysis was achieved with a portable strip-reader, and the detection ranges were 0.15–2.6, 6.3–677, 0.13–2.8, and 83–1245 µg/kg for procaines, eugenols, bupivacaines, and tricaine, respectively. Our developed method was reliable and accurate according to the recovery test results and analyses of real samples. Therefore, the strip can be used as an alternative method for the rapid detection of anesthetic residues in fish.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics

Show Author's information Xianlu Lei1,2Xinxin Xu1,2( )Li Wang1,2Wei Zhou3Liqiang Liu1,2Liguang Xu1,2Hua Kuang1,2( )Chuanlai Xu1,2
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Jiangsu Product Quality Testing and Inspection Institute, Nanjing 210000, China

Abstract

Anesthetic residues in fish represent a potential risk to human health. Therefore, it is important to develop a sensitive and broad-specific method for the detection of anesthetics. In this study, we developed a colloidal gold-based quadruplex immunochromatographic (Qua-ICS) assay using four highly sensitive monoclonal antibody immunotherapy (mAbs) that simultaneously detected 11 anesthetic residues in fish within 10 min. The colorimetric and cut-off values (COVs) for procaines, eugenols, bupivacaines, and tricaine (TMS) were 0.37–1.1 and 3.3–10, 11–222 and 100–2000, 0.37 and 3.3, and 111 and 10,000 µg/kg, respectively. Quantitative analysis was achieved with a portable strip-reader, and the detection ranges were 0.15–2.6, 6.3–677, 0.13–2.8, and 83–1245 µg/kg for procaines, eugenols, bupivacaines, and tricaine, respectively. Our developed method was reliable and accurate according to the recovery test results and analyses of real samples. Therefore, the strip can be used as an alternative method for the rapid detection of anesthetic residues in fish.

Keywords: colloidal gold, bupivacaine, eugenol, procaine, tricaine (TMS)

References(39)

[1]

Purbosari, N.; Warsiki, E.; Syamsu, K.; Santoso, J. Natural versus synthetic anesthetic for transport of live fish: A review. Aquacult. Fish. 2019, 4, 129–133.

[2]

Fernandes, I. M.; Bastos, Y. F.; Barreto, D. S.; Lourenço, L. S.; Penha, J. M. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz. J. Biol. 2017, 77, 444–450.

[3]

Ke, C. L.; Liu, Q.; Li, L. D.; Chen, J. W.; Wang, X. N.; Huang, K. Simultaneous determination of eugenol, isoeugenol and methyleugenol in fish fillet using gas chromatography coupled to tandem mass spectrometry. J. Chromatogr. B 2016, 1031, 189–194.

[4]

Huang, Y. X.; Li, Q.; Zhang, Y. L.; Meng, Z. J.; Yuan, X. X.; Fan, S. F.; Zhang, Y. Determination of six eugenol residues in aquatic products by gas chromatography-orbitrap mass spectrometry. J. Food Quality 2021, 2021, 9438853.

[5]

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, L. G.; Hao, C. L. Immunochromatographic test strip for the rapid detection of tricaine in fish samples. Food Agricult. Immunol. 2020, 31, 687–699.

[6]

Popovic, N. T.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Berakovic, A.; P. Klobucar, R, S. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564.

[7]

Al-Saadi, A. A.; Haroon, M.; Popoola, S. A.; Saleh, T. A. Sensitive SERS detection and characterization of procaine in aqueous media by reduced gold nanoparticles. Sens. Actuators B:Chem. 2020, 304, 127057.

[8]

Haroon, M.; Abdulazeez, I.; Saleh, T. A.; Al-Saadi, A. A. Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere. Electrochim. Acta 2021, 387, 138463.

[9]

Kay, P.; Hughes, S. R.; Ault, J. R.; Ashcroft, A. E.; Brown, L. E. Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters. Environ. Pollut. 2017, 220, 1447–1455.

[10]

Malev, O.; Lovrić, M.; Stipaničev, D.; Repec, S.; Martinović-Weigelt, D.; Zanella, D.; Ivanković, T.; Đuretec, V. S.; Barišić, J.; Li, M. et al. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). Environ. Pollut. 2020, 266, 115162.

[11]

Chèvre, N. Pharmaceuticals in surface waters: Sources, behavior, ecological risk, and possible solutions. Case study of Lake Geneva, Switzerland. Wiley Interdiscip. Rev.: Water 2014, 1, 69–86.

[12]

Mu, S. H.; Wang, C. Y.; Liu, H.; Han, G.; Wu, L. D.; Li, J. C. Development and evaluation of a novelty single-step cleanup followed by HPLC-QTRAP-MS/MS for rapid analysis of tricaine, tetracaine, and bupivacaine in fish samples. Biom. Chromatogr. 2021, 35, e5176.

[13]

Zhou, R. D.; Mu, S. H.; Feng, T. W.; Liu, H.; Sun, H. W.; Li, J. C. Development of a vortex oscillating clean-up column for high-throughput semi-automatic sample preparation of drug residues in fish muscle tissues. J. Food Compos. Analy. 2022, 109, 104506.

[14]
Cho, S. H.; Park, J. A.; Zheng, W. J.; El-Aty, A. M. A.; Kim, S. K.; Choi, J. M.; Yi, H.; Cho, S. M.; Afifi, N. A.; Shim, J. H. et al. Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry. J. Chromatogr. B 2017, 1065–1066, 29–34.
[15]

Shen, X. Y.; Wu, X. L.; Liu, L. Q.; Kuang, H. Development of a colloidal gold immunoassay for the detection of four eugenol compounds in water. Food Agricult. Immunol. 2019, 30, 1318–1331.

[16]

Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377.

[17]

Foubert, A.; Beloglazova, N. V.; Gordienko, A.; Tessier, M. D.; Drijvers, E.; Hens, Z.; De Saeger, S. Development of a rainbow lateral flow immunoassay for the simultaneous detection of four mycotoxins. J. Agric. Food Chem. 2017, 65, 7121–7130.

[18]

Vasylieva, N.; Barnych, B.; Rand, A.; Inceoglu, B.; Gee, S. J.; Hammock, B. D. Sensitive immunoassay for detection and quantification of the neurotoxin, tetramethylenedisulfotetramine. Anal. Chem. 2017, 89, 5612–5619.

[19]

Kalele, S. A.; Kundu, A. A.; Gosavi, S. W.; Deobagkar, D. N.; Deobagkar, D. D.; Kulkarni, S. K. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small 2006, 2, 335–338.

[20]
Taranova, N. A.; Berlina, A. N.; Zherdev, A. V.; Dzantiev, B. B. “Traffic light” immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 2015, 63, 255–261.
[21]

Chen, Y. N.; Guo, L. L.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J. Agric. Food Chem. 2017, 65, 8248–8255.

[22]

Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

[23]

Wang, Z. X.; Zhao, J.; Xu, X. X.; Guo, L. L.; Xu, L. G.; Sun, M. Z.; Hu, S. D.; Kuang, H.; Xu, C. L.; Li, A. K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.

[24]

Guo, L. L.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 2018, 14, 1701782.

[25]

Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

[26]

Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

[27]

Rivas, L.; De La Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714.

[28]

Hao, K.; Suryoprabowo, S.; Song, S. S.; Liu, L. Q.; Zheng, Q. K.; Kuang, H. Development of an immunochromatographic test strip for the detection of procaine in milk. Food Agricult. Immunol. 2018, 29, 1150–1161.

[29]

Lin, L.; Song, S. S.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xiao, J.; Xu, C. L. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst 2021, 146, 721–729.

[30]

Yao, J. J.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit. Contam.: Part A 2022, 39, 531–541.

[31]

Lei, X. L.; Xu, X. X.; Wang, L.; Liu, L. Q.; Kuang, H.; Xu, L. G.; Xu, C. L. Fluorescent microsphere-based lateral-flow immunoassay for rapid and sensitive determination of eugenols. Food Chem. 2023, 411, 135475.

[32]

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

[33]

Hong, C. Y.; Chen, L. L.; Huang, J. Y.; Shen, Y. L.; Yang, H. F.; Huang, Z. Y.; Cai, R.; Tan, W. H. Gold nanoparticle-decorated MoSe2 nanosheets as highly effective peroxidase-like nanozymes for total antioxidant capacity assay. Nano Res. 2023, 16, 7181–7187.

[34]

Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications. Biosens. Bioelectron. 2020, 165, 112370.

[35]

Hua, Z.; Yu, T.; Liu, D. H.; Xianyu, Y. L. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076.

[36]

Xiang, T. Y.; Xu, X. X.; Xu, L. G.; Liu, L. Q.; Xu, C. L.; Kuang, H. Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables. New J. Chem. 2022, 46, 3882–3888.

[37]

Wang, W. Q.; Yang, X. S.; Rong, Z.; Tu, Z. J.; Zhang, X. C.; Gu, B.; Wang, C. W.; Wang, S. Q. Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses. Nano Res. 2023, 16, 3063–3073.

[38]

Dhananjeyan, M. R.; Bykowski, C.; Trendel, J. A.; Sarver, J. G.; Ando, H.; Erhardt, P. W. Simultaneous determination of procaine and para-aminobenzoic acid by LC-MS/MS method. J. Chromatogr. B 2007, 847, 224–230.

[39]

Bai, Y. C.; Liu, R.; Dou, L. N.; Wu, W. L.; Yu, W. B.; Wen, K.; Yu, X. Z.; Shen, J. Z.; Wang, Z. H. The influence of hapten spacer arm length on antibody response and immunoassay development. Analy. Chim. Acta 2023, 1239, 340699.

File
12274_2023_5768_MOESM1_ESM.pdf (700.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 February 2023
Revised: 13 April 2023
Accepted: 23 April 2023
Published: 13 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2022YFF1101002), and Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project (No. TJ-2021-049).

Return