Journal Home > Volume 16 , Issue 8

Dual atom catalysts (DACs), are promising electrocatalysts for oxygen reduction reaction (ORR) on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower reaction energy barriers. Herein, spatial confinement strategy to fabricate DACs with well-defined Fe, Co dual-atom active site is proposed by implanting zeolitic imidazolate frameworks inside the pores of highly porous carbon nanospheres (Fe/Co-SAs-Nx-PCNSs). The atomically dispersed dual-atom active sites facilitate the adsorption/desorption of intermediates. Furthermore, the spatial confinement effect protects metal atoms aggregating. Benefiting from the rich accessible dual-atom active sites and boosted mass transport, we achieve remarkable ORR performance with half-wave potential up to 0.91 and 0.8 V (vs. reversible hydrogen electrode (RHE)), and long-term stability up to 10 h in both alkaline and acidic electrolytes. The remarkably enhanced ORR catalytic property of our as-developed DACs is in the rank of excellence for 1%. The as-developed rechargeable Zn-air battery (ZAB) with Fe/Co-SAs-Nx-PCNSs air cathode delivers ultrahigh power density of 216 mW·cm−2, outstanding specific capacity of 813 mAh·g−1, and promising cycling operation durability over 160 h. The flexible Zn-air battery also exhibits excellent specific capacity, cycling stability, and flexibility performance. This work opens up a new pathway for the multiscale design of efficient electrocatalysts with atomically dispersed multiple active sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction

Show Author's information Jiayi Zhao1,§Ping Li1,§Kaicai Fan2Wenjie Wei1Fenghong Lu1Huimin Zhao1Bin Li2Lingbo Zong1( )Lei Wang1( )
Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§ Jiayi Zhao and Ping Li contributed equally to this work.

Abstract

Dual atom catalysts (DACs), are promising electrocatalysts for oxygen reduction reaction (ORR) on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower reaction energy barriers. Herein, spatial confinement strategy to fabricate DACs with well-defined Fe, Co dual-atom active site is proposed by implanting zeolitic imidazolate frameworks inside the pores of highly porous carbon nanospheres (Fe/Co-SAs-Nx-PCNSs). The atomically dispersed dual-atom active sites facilitate the adsorption/desorption of intermediates. Furthermore, the spatial confinement effect protects metal atoms aggregating. Benefiting from the rich accessible dual-atom active sites and boosted mass transport, we achieve remarkable ORR performance with half-wave potential up to 0.91 and 0.8 V (vs. reversible hydrogen electrode (RHE)), and long-term stability up to 10 h in both alkaline and acidic electrolytes. The remarkably enhanced ORR catalytic property of our as-developed DACs is in the rank of excellence for 1%. The as-developed rechargeable Zn-air battery (ZAB) with Fe/Co-SAs-Nx-PCNSs air cathode delivers ultrahigh power density of 216 mW·cm−2, outstanding specific capacity of 813 mAh·g−1, and promising cycling operation durability over 160 h. The flexible Zn-air battery also exhibits excellent specific capacity, cycling stability, and flexibility performance. This work opens up a new pathway for the multiscale design of efficient electrocatalysts with atomically dispersed multiple active sites.

Keywords: oxygen reduction reaction (ORR), zeolitic imidazolate framework, spatial confinement, porous carbon nanospheres (PCNSs), dual-atom catalyst

References(52)

[1]

Zong, L. B.; Fan, K. C.; Wu, W. C.; Cui, L. X.; Zhang, L. L.; Johannessen, B.; Qi, D. C.; Yin, H. J.; Wang, Y.; Liu, P. R. et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2104864.

[2]

Chen, X.; Pu, J.; Hu, X. H.; An, L.; Jiang, J. J.; Li, Y. J. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Res. 2022, 15, 9000–9009.

[3]

Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187.

[4]

Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.

[5]

Zong, L. B.; Chen, X.; Liu, S. L.; Fan, K. C.; Dou, S. M.; Xu, J.; Zhao, X. X.; Zhang, W. J.; Zhang, Y. W.; Wu, W. C. et al. Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries. J. Energy Chem. 2021, 56, 72–79.

[6]
Jiao, C. L.; Xu, Z.; Shao, J. Z.; Xia, Y.; Tseng, J.; Ren, G. Y.; Zhang, N. J.; Liu, P. F.; Liu, C. X.; Li, G. S. et al. High-density atomic Fe-N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batteries. Adv. Funct. Mater., 2023, 33, 2213897–2213903.
[7]

Zhao, Y. S.; Wan, J. W.; Yang, N. L.; Yu, R. B.; Wang, D. sp-Hybridized nitrogen doped graphdiyne for high-performance Zn-air batteries. Mater. Chem. Front. 2021, 5, 7987–7992.

[8]

Zhu, S. Y.; Yang, L. T.; Bai, J. S.; Chu, Y. Y.; Liu, J.; Jin, Z.; Liu, C. P.; Ge, J. J.; Xing, W. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Res. 2023, 16, 2035–2040.

[9]

Dai, Y. W.; Yu, J.; Wang, J.; Shao, Z. P.; Guan, D. Q.; Huang, Y. C.; Ni, M. Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2111989.

[10]

Nallathambi, V.; Lee, J. W.; Kumaraguru, S. P.; Wu, G.; Popov, B. N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. J. Power Sources 2008, 183, 34–42.

[11]

Zhang, W. J.; Fan, K. C.; Chuang, C. H.; Liu, P. R.; Zhao, J.; Qi, D. C.; Zong, L. B.; Wang, L. Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. J. Energy Chem. 2021, 61, 612–621.

[12]

Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.

[13]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[14]

Liu, B. K.; Xu, L. K.; Zhao, Y. S.; Du, J.; Yang, N. L.; Wang, D. Heteroatoms in graphdiyne for catalytic and energy-related applications. J. Mater. Chem. A 2021, 9, 19298–19316.

[15]

Keith, J. A.; Jerkiewicz, G.; Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 2010, 11, 2779–2794.

[16]

Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd-Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.

[17]

Ravichandran, S.; Bhuvanendran, N.; Xu, Q.; Maiyalagan, T.; Xing, L.; Su, H. N. Ordered mesoporous Pt-Ru-Ir nanostructures as superior bifunctional electrocatalyst for oxygen reduction/oxygen evolution reactions. J. Colloid Interface Sci. 2022, 608, 207–218.

[18]

Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.

[19]

Liu, C.; Shen, Y.; Zhang, J. F.; Li, G.; Zheng, X. R.; Han, X. P.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505.

[20]

Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.

[21]

Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.

[22]

Lu, F. H.; Fan, K. C.; Cui, L. X.; Yang, Y.; Wang, W. X.; Zhang, G. T.; Wang, C. B.; Zhang, Q.; Li, B.; Zong, L. B. et al. Cu-N4 single atoms derived from metal-organic frameworks with trapped nitrogen-rich molecules and their use as efficient electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2022, 431, 133242.

[23]

Lu, F. H.; Fan, K. C.; Cui, L. X.; Li, B.; Yang, Y.; Zong, L. B.; Wang, L. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B:Environ. 2022, 313, 121464.

[24]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[25]

Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261.

[26]

Zhang, H.; Sun, Q. D.; He, Q.; Zhang, Y.; He, X. H.; Gan, T.; Ji, H. B. Single Cu atom dispersed on S, N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Res. 2022, 15, 5995–6000.

[27]

Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J. J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H. et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.

[28]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[29]

Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B:Environ. 2022, 316, 121607.

[30]

Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.

[31]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[32]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[33]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[34]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[35]
Zhou, L.; Zhou, P.; Zhang, Y. L.; Liu, B. Y.; Gao, P.; Guo, S. J. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J. Energy Chem. 2021, 55, 355–360.
[36]

Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res., 2023, 16, 4468–4487.

[37]

Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.

[38]

Yao, D. Z.; Tang, C.; Zhi, X.; Johannessen, B.; Slattery, A.; Chern, S.; Qiao, S. Z. Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 2023, 35, 2209386.

[39]

Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core–shell spheres. Chem. Commun. 2012, 48, 9388–9390.

[40]
Ahn, S. H.; Yu, X. W.; Manthiram, A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 2017, 29, 1606534.
[41]

Wang, S. D.; He, Q.; Wang, C. D.; Jiang, H. L.; Wu, C. Q.; Chen, S. M.; Zhang, G. B.; Song, L. Active sites engineering toward superior carbon-based oxygen reduction catalysts via confinement pyrolysis. Small 2018, 14, 1800128.

[42]

Shao, C. F.; Wu, L. M.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Wang, Y. H.; Zhuang, S. G.; Chu, H. L.; Sun, L. X.; Ye, J. S. et al. A versatile approach to boost oxygen reduction of Fe-N4 sites by controllably incorporating sulfur functionality. Adv. Funct. Mater. 2021, 31, 2100833.

[43]

Liang, L.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

[44]

Jia, J. T.; Chen, Z. J.; Jiang, H.; Belmabkhout, Y.; Mouchaham, G.; Aggarwal, H.; Adil, K.; Abou-Hamad, E.; Czaban-Jóźwiak, J.; Tchalala, M. R. et al. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem 2019, 5, 180–191.

[45]

Lin, X. N.; Shi, L.; Liu, F.; Jiang, C. C.; Mao, J. J.; Hu, C. G.; Liu, D. Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis. Nano Res. 2022, 15, 1926–1933.

[46]

Charreteur, F.; Jaouen, F.; Ruggeri, S.; Dodelet, J. P. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 2008, 53, 2925–2938.

[47]

Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

[48]

Zhu, W. K.; Pei, Y. B.; Douglin, J. C.; Zhang, J. F.; Zhao, H. Y.; Xue, J. D.; Wang, Q. F.; Li, R.; Qin, Y. Z.; Yin, Y. et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B:Environ. 2021, 299, 120656.

[49]

Li, H.; Chen, X.; Chen, J. Y.; Shen, K.; Li, Y. W. Hierarchically porous Fe, N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. Nanoscale 2021, 13, 10500–10508.

[50]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[51]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[52]

Ren, B. H.; Zhang, Z.; Wen, G. B.; Zhang, X. W.; Xu, M.; Weng, Y. Y.; Nie, Y. H.; Dou, H. Z.; Jiang, Y.; Deng, Y. P. et al. Dual-scale integration design of Sn-ZnO catalyst toward efficient and stable CO2 electroreduction. Adv. Mater. 2022, 34, 2204637.

File
12274_2023_5767_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2022
Revised: 31 March 2023
Accepted: 16 April 2023
Published: 13 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 52172208, 52072197, and 21971132) and Natural Science Foundation of Shandong Province (No. ZR2019MB042).

Return