Journal Home > Volume 16 , Issue 12

Formaldehyde (FA), as the simplest endogenous carbonyl molecule, participates in many biosynthesis and metabolism in living organisms, such as nucleotides and adenosine triphosphate (ATP). FA concentrations are sub-millimolar in the normal healthy body, but can rise significantly in a number of disease pathologies. As a result, detecting endogenous FA is critical for illness diagnosis and rehabilitation therapy monitoring. Recent studies have focused on the FA-responsive turn-on fluorescence probe, which has huge promise in the detection and visualization of FA in living cells and organisms, as well as exceptional use in disease diagnosis and therapeutic monitoring. This review summarizes the fluorescence luminescence mechanism and design concepts of FA fluorescent probes, as well as their recent applications in bioimaging and illness diagnostics. Additionally, this article indicates the present dilemma of FA-responsive fluorescent probe, including selectivity, specificity, and detection mode, which may provide references for the development of FA-responsive fluorescent probes.


menu
Abstract
Full text
Outline
About this article

Endogenous formaldehyde responsive fluorescent probe for bioimaging

Show Author's information Ning-Bo Yi1,2Xing-Jie Hu2Fei Wang3Si-Yi Chen1Xiao-Xue Xu1Xin Li1Hao Wang2Taolei Sun1Zeng-Ying Qiao2( )Dong-Bing Cheng1( )
Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China
CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Department of Biology and the School of Natural Sciences, Went Worth College, University of York, Heslington, York, YO10 5DD, UK

Abstract

Formaldehyde (FA), as the simplest endogenous carbonyl molecule, participates in many biosynthesis and metabolism in living organisms, such as nucleotides and adenosine triphosphate (ATP). FA concentrations are sub-millimolar in the normal healthy body, but can rise significantly in a number of disease pathologies. As a result, detecting endogenous FA is critical for illness diagnosis and rehabilitation therapy monitoring. Recent studies have focused on the FA-responsive turn-on fluorescence probe, which has huge promise in the detection and visualization of FA in living cells and organisms, as well as exceptional use in disease diagnosis and therapeutic monitoring. This review summarizes the fluorescence luminescence mechanism and design concepts of FA fluorescent probes, as well as their recent applications in bioimaging and illness diagnostics. Additionally, this article indicates the present dilemma of FA-responsive fluorescent probe, including selectivity, specificity, and detection mode, which may provide references for the development of FA-responsive fluorescent probes.

Keywords: bioimaging, fluorescent probe, endogenous formaldehyde, tumor cell

References(98)

[1]

Lai, Y. Q.; Yu, R.; Hartwell, H. J.; Moeller, B. C.; Bodnar, W. M.; Swenberg, J. A. Measurement of endogenous versus exogenous formaldehyde-induced DNA-protein crosslinks in animal tissues by stable isotope labeling and ultrasensitive mass spectrometry. Cancer Res. 2016, 76, 2652–2661.

[2]

Kou, Y. D.; Zhao, H.; Cui, D. H.; Han, H. B.; Tong, Z. Q. Formaldehyde toxicity in age-related neurological dementia. Ageing Res. Rev. 2022, 73, 101512.

[3]

Wolkoff, P. Indoor air pollutants in office environments: Assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 2013, 216, 371–394.

[4]

Morellato, A. E.; Umansky, C.; Pontel, L. B. The toxic side of one-carbon metabolism and epigenetics. Redox Biol. 2021, 40, 101850.

[5]

Vasilyev, N.; Williams, T.; Brennan, M. L.; Unzek, S.; Zhou, X. R.; Heinecke, J. W.; Spitz, D. R.; Topol, E. J.; Hazen, S. L.; Penn, M. S. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 2005, 112, 2812–2820.

[6]

Burgos-Barragan, G.; Wit, N.; Meiser, J.; Dingler, F. A.; Pietzke, M.; Mulderrig, L.; Pontel, L. B.; Rosado, I. V.; Brewer, T. F.; Cordell, R. L. et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 2017, 548, 549–554.

[7]

Umansky, C.; Morellato, A. E.; Rieckher, M.; Scheidegger, M. A.; Martinefski, M. R.; Fernández, G. A.; Pak, O.; Kolesnikova, K.; Reingruber, H.; Bollini, M. et al. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat. Commun. 2022, 13, 745.

[8]

Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol. Pathol. 2013, 41, 181–189.

[9]

Chen, N. H.; Djoko, K. Y.; Veyrier, F. J.; McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 2016, 7, 257.

[10]

Jung, M.; Smogorzewska, A. Hematopoiesis and stem cells: Endogenous formaldehyde destroys blood stem cells. Blood 2021, 137, 1988–1990.

[11]

Rohlhill, J.; Har, J. R. G.; Antoniewicz, M. R.; Papoutsakis, E. T. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation. Metab. Eng. 2020, 57, 247–255.

[12]

Lu, K.; Craft, S.; Nakamura, J.; Moeller, B. C.; Swenberg, J. A. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine. Chem. Res. Toxicol. 2012, 25, 664–675.

[13]

Ma, B. K.; Xu, F. J.; He, M.; Lin, Y. Q.; Hu, G. H.; Zhang, M.; Zhao, X. Y.; Liu, W. L. Detection of residual formaldehyde in N-butyl-2-cyanoacrylate by high-performance liquid chromatography with rhodamine B hydrazide. Microchem. J. 2020, 158, 105222.

[14]

Cordis, G. A.; Bagchi, D.; Maulik, N.; Das, D. K. High-performance liquid chromatographic method for the simultaneous detection of malonaldehyde, acetaldehyde, formaldehyde, acetone and propionaldehyde to monitor the oxidative stress in heart. J. Chromatogr. A 1994, 661, 181–191.

[15]

Silva, A. F. S.; Goncalves, I. C.; Rocha, F. R. P. Smartphone-based digital images as a novel approach to determine formaldehyde as a milk adulterant. Food Control 2021, 125, 107956.

[16]

Wongniramaikul, W.; Limsakul, W.; Choodum, A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry. Food Chem. 2018, 249, 154–161.

[17]

Bianchi, F.; Careri, M.; Musci, M.; Mangia, A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem. 2007, 100, 1049–1053.

[18]

Oancea, A.; Hanoune, B.; Focsa, C.; Chazallon, B. Cross determination of the vapor liquid equilibrium of formaldehyde aqueous solutions by quadrupole mass spectrometry and infrared diode laser spectroscopy. Environ. Sci. Technol. 2009, 43, 435–440.

[19]

Lipari, F.; Swarin, S. J. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air. Environ. Sci. Technol. 1985, 19, 70–74.

[20]

Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Fluorescent probes for imaging formaldehyde in biological systems. Curr. Opin. Chem. Biol. 2017, 39, 17–23.

[21]

Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N. N.; Wang, Y. L.; Zheng, K. B. Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coord. Chem. Rev. 2020, 404, 213109.

[22]

Kumaravel, S.; Wu, S. H.; Chen, G. Z.; Huang, S. T.; Lin, C. M.; Lee, Y. C.; Chen, C. H. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens. Bioelectron. 2021, 171, 112720.

[23]

Hämmerle, M.; Hall, E. A. H.; Cade, N.; Hodgins, D. Electrochemical enzyme sensor for formaldehyde operating in the gas phase. Biosens. Bioelectron. 1996, 11, 239–246.

[24]

Sandler, S.; Strom, R. Determination of formaldehyde by gas chromatography. Anal. Chem. 1960, 32, 1890–1891.

[25]

Zhao, X. J.; Ji, C. D.; Ma, L.; Wu, Z.; Cheng, W. Y.; Yin, M. Z. An aggregation-induced emission-based “turn-on” fluorescent probe for facile detection of gaseous formaldehyde. ACS Sens. 2018, 3, 2112–2117.

[26]

Sun, X. X.; Zhang, H.; Hao, S.; Zhai, J. F.; Dong, S. J. A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection. ACS Sens. 2019, 4, 2631–2637.

[27]

Escudero, D. Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 2016, 49, 1816–1824.

[28]

Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 2005, 436, 1139–1140.

[29]

Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212–10275.

[30]

Allen, A. R.; Noten, E. A.; Stephenson, C. R. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 2022, 122, 2695–2751.

[31]

Gui, B.; Meng, Y.; Xie, Y.; Tian, J. W.; Yu, G.; Zeng, W. X.; Zhang, G. X.; Gong, S. L.; Yang, C. L.; Zhang, D. Q. et al. Tuning the photoinduced electron transfer in a Zr-MOF: Toward solid-state fluorescent molecular switch and turn-on sensor. Adv. Mater. 2018, 30, 1802329.

[32]

Yoshihara, T.; Druzhinin, S. I.; Zachariasse, K. A. Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J. Am. Chem. Soc. 2004, 126, 8535–8539.

[33]

Wang, C.; Qiao, Q. L.; Chi, W. J.; Chen, J.; Liu, W. J.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X. F.; Zhou, W. et al. Quantitative design of bright fluorophores and AIEgens by the accurate prediction of twisted intramolecular charge transfer (TICT). Angew. Chem. 2020, 132, 10246–10258.

[34]

Qian, F.; Zhang, C. L.; Zhang, Y. M.; He, W. J.; Gao, X.; Hu, P.; Guo, Z. J. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J. Am. Chem. Soc. 2009, 131, 1460–1468.

[35]

Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880.

[36]

Jiang, G. W.; Jin, Y.; Li, M.; Wang, H. L.; Xiong, M. Y.; Zeng, W. L.; Yuan, H.; Liu, C. L.; Ren, Z. Q.; Liu, C. R. Faster and more specific: Excited-state intramolecular proton transfer-based dyes for high-fidelity dynamic imaging of lipid droplets within cells and tissues. Anal. Chem. 2020, 92, 10342–10349.

[37]

Seo, J.; Kim, S.; Park, S. Y. Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer. J. Am. Chem. Soc. 2004, 126, 11154–11155.

[38]

Li, Y. H.; Dahal, D.; Abeywickrama, C. S.; Pang, Y. Progress in tuning emission of the excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes. ACS Omega 2021, 6, 6547–6553.

[39]

Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110.

[40]

Miao, Y. W.; Sathiyan, G.; Wang, H. X.; Tian, Y.; Chen, C.; Ding, X. D.; Zhai, M. D.; Yang, X. C.; Cheng, M. Construction of efficient perovskite solar cell through small-molecule synergistically assisted surface defect passivation and fluorescence resonance energy transfer. Chem. Eng. J. 2021, 426, 131358.

[41]

Wu, Y.; Yan, C. X.; Li, X. S.; You, L. H.; Yu, Z. Q.; Wu, X. F.; Zheng, Z. G.; Liu, G. F.; Guo, Z. Q.; Tian, H. et al. Circularly polarized fluorescence resonance energy transfer (C-FRET) for efficient chirality transmission within an intermolecular system. Angew. Chem. 2021, 133, 24754–24762.

[42]

Li, Y. B.; Wang, L.; Zhao, L. T.; Li, M.; Wen, Y. M. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk. Food Chem. 2021, 357, 129769.

[43]

Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 2011, 40, 3483–3495.

[44]

Goodman, C. G.; Johnson, J. S. Asymmetric synthesis of β-amino amides by catalytic enantioconvergent 2-aza-cope rearrangement. J. Am. Chem. Soc. 2015, 137, 14574–14577.

[45]

Wei, L.; Chang, X.; Wang, C. J. Catalytic asymmetric reactions with N-metallated azomethine ylides. Acc. Chem. Res. 2020, 53, 1084–1100.

[46]

Roth, A.; Li, H.; Anorma, C.; Chan, J. A reaction-based fluorescent probe for imaging of formaldehyde in living cells. J. Am. Chem. Soc. 2015, 137, 10890–10893.

[47]

Brewer, T. F.; Chang, C. J. An aza-cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J. Am. Chem. Soc. 2015, 137, 10886–10889.

[48]

Lee, M. G.; Wynder, C.; Schmidt, D. M.; McCafferty, D. G.; Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 2006, 13, 563–567.

[49]

Liu, J.; Liu, F. Y.; Tong, Z. Q.; Li, Z. H.; Chen, W.; Luo, W. H.; Li, H.; Luo, H. J.; Tang, Y.; Tang, J. M. et al. Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats. PLoS One 2013, 8, e58957.

[50]

Stazi, G.; Zwergel, C.; Valente, S.; Mai, A. LSD1 inhibitors: A patent review (2010–2015). Expert Opin. Ther. Pat. 2016, 26, 565–580.

[51]

Chen, J.; Shao, C. W.; Wang, X. A.; Gu, J.; Zhu, H. L.; Qian, Y. Imaging of formaldehyde fluxes in epileptic brains with a two-photon fluorescence probe. Chem. Commun. 2020, 56, 3871–3874.

[52]

Vu, H. T.; Akatsu, H.; Hashizume, Y.; Setou, M.; Ikegami, K. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease. Sci. Rep. 2017, 7, 40205.

[53]

Du, Y. M.; Zhang, Y. Q.; Huang, M. R.; Wang, S. S.; Wang, J. Z.; Liao, K. K.; Wu, X. J.; Zhou, Q.; Zhang, X. H.; Wu, Y. D. et al. Systematic investigation of the aza-cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem. Sci. 2021, 12, 13857–13869.

[54]

Zhang, Y. Q.; Du, Y. M.; Li, M. J.; Zhang, D.; Xiang, Z.; Peng, T. Activity-based genetically encoded fluorescent and luminescent probes for detecting formaldehyde in living cells. Angew. Chem. 2020, 132, 16494–16498.

[55]

Liu, C. L.; Zhang, R.; Zhang, W. Z.; Liu, J. P.; Wang, Y. L.; Du, Z. B.; Song, B.; Xu, Z. P.; Yuan, J. L. “Dual-key-and-lock” ruthenium complex probe for lysosomal formaldehyde in cancer cells and tumors. J. Am. Chem. Soc. 2019, 141, 8462–8472.

[56]

Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86.

[57]

Quan, T. T.; Liang, Z. H.; Pang, H. T.; Zeng, G. L.; Chen, T. S. A ratiometric ESIPT probe based on 2-aza-cope rearrangement for rapid and selective detection of formaldehyde in living cells. Analyst 2022, 147, 252–261.

[58]

Song, H.; Rajendiran, S.; Kim, N.; Jeong, S. K.; Koo, E.; Park, G.; Thangadurai, T. D.; Yoon, S. A tailor designed fluorescent “turn-on” sensor of formaldehyde based on the BODIPY motif. Tetrahedron Lett. 2012, 53, 4913–4916.

[59]

Ding, N.; Li, Z.; Hao, Y. T.; Yang, X. B. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice. Food Chem. 2022, 384, 132426.

[60]

He, X. Y.; Hu, Y. M.; Shi, W.; Li, X. H.; Ma, H. M. Design, synthesis and application of a near-infrared fluorescent probe for in vivo imaging of aminopeptidase N. Chem. Commun. 2017, 53, 9438–9441.

[61]

Wang, T. N.; Douglass Jr, E. F.; Fitzgerald, K. J.; Spiegel, D. A. A “turn-on” fluorescent sensor for methylglyoxal. J. Am. Chem. Soc. 2013, 135, 12429–12433.

[62]

Wang, W. L.; Chen, J. L.; Ma, H. J.; Xing, W. J.; Lv, N.; Zhang, B. N.; Xu, H.; Wang, W.; Lou, K. Y. An “AND”-logic-gate-based fluorescent probe with dual reactive sites for monitoring extracellular methylglyoxal level changes of activated macrophages. Chem. Commun. 2021, 57, 8166–8169.

[63]

Cai, S. T.; Liu, C.; Jiao, X. J.; Zhao, L. C.; Zeng, X. S. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells. Tetrahedron 2020, 76, 131617.

[64]

Cai, S. T.; Liu, C.; Gong, J.; He, S.; Zhao, L. C.; Zeng, X. S. A lysosome-targeted fluorescent probe for the specific detection and imaging of formaldehyde in living cells. Spectrochim. Acta Part A 2021, 245, 118949.

[65]

Jana, A.; Joseph, M. M.; Munan, S.; Shamna, K.; Maiti, K. K.; Samanta, A. A single benzene fluorescent probe for efficient formaldehyde sensing in living cells using glutathione as an amplifier. J. Photochem. Photobiol. B 2021, 214, 112091.

[66]

Liu, C.; Jiao, X. J.; He, S.; Zhao, L. C.; Zeng, X. S. A reaction-based fluorescent probe for the selective detection of formaldehyde and methylglyoxal via distinct emission patterns. Dyes Pigm. 2017, 138, 23–29.

[67]

Tang, Y. H.; Kong, X. Q.; Xu, A.; Dong, B. L.; Lin, W. Y. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew. Chem. 2016, 55, 3356–3359.

[68]

Tang, Y. H.; Kong, X. Q.; Liu, Z. R.; Xu, A.; Lin, W. Y. Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal. Chem. 2016, 88, 9359–9363.

[69]

Tang, Y. H.; Ma, Y. Y.; Xu, A.; Xu, G. P.; Lin, W. Y. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells. Methods Appl. Fluoresc. 2017, 5, 024005.

[70]

Zhang, Y. B.; Qiu, X. Y.; Sun, L.; Yan, Q.; Luck, R. L.; Liu, H. Y. A two-photon fluorogenic probe based on a coumarin schiff base for formaldehyde detection in living cells. Spectrochim. Acta Part A 2022, 274, 121074.

[71]

Li, J. F.; Ding, D. H.; Song, W. H.; Wang, J. Y.; Quan, W.; Huang, L.; Lin, W. Y. Visualization of endogenous formaldehyde in the nucleus via a robust activatable fluorescent probe. Sens. Actuators B 2022, 368, 132136.

[72]

Chen, S.; Jia, Y.; Zou, G. Y.; Yu, Y. L.; Wang, J. H. A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale 2019, 11, 6377–6383.

[73]

Shuang, E.; Mao, Q. X.; Yuan, X. L.; Kong, X. L.; Chen, X. W.; Wang, J. H. Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. Nanoscale 2018, 10, 12788–12796.

[74]

Hua, X. W.; Bao, Y. W.; Wu, F. G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 10664–10677.

[75]

Zou, G. Y.; Guo, L.; Chen, S.; Liu, N. Z.; Yu, Y. L. Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging. Sens. Actuators B 2022, 357, 131376.

[76]

Yang, L. N.; Han, Q. X.; Ling, X. L.; Wang, Y. S.; Li, M. H.; Chen, Q. L.; Wang, X. C. N-butyl-4-hydrazino-1,8-naphthalimide-loaded chitosan self-assembled nanoparticles as fluorescent ratiometric chemosensors for detection of formaldehyde. ACS Appl. Nano Mater. 2022, 5, 7392–7401.

[77]

Chen, H. W.; Li, H.; Song, Q. H. BODIPY-substituted hydrazine as a fluorescent probe for rapid and sensitive detection of formaldehyde in aqueous solutions and in live cells. ACS Omega 2018, 3, 18189–18195.

[78]

Han, B. C.; Sun, J.; Chen, K.; Chen, Z. Y.; Huang, M. H.; Gao, Z. Z.; Hou, X. F. A novel fluorescent probe for formaldehyde based-on monomer–excimer conversion and its imaging in live cells. Tetrahedron 2018, 74, 7193–7197.

[79]

Kaanumalle, L. S.; Gibb, C. L. D.; Gibb, B. C.; Ramamurthy, V. A hydrophobic nanocapsule controls the photophysics of aromatic molecules by suppressing their favored solution pathways. J. Am. Chem. Soc. 2005, 127, 3674–3675.

[80]

Das, A.; Danao, A.; Banerjee, S.; Raj, A. M.; Sharma, G.; Prabhakar, R.; Srinivasan, V.; Ramamurthy, V.; Sen, P. Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. J. Am. Chem. Soc. 2021, 143, 2025–2036.

[81]

Karuppannan, S.; Chambron, J. C. Supramolecular chemical sensors based on pyrene monomer–excimer dual luminescence. Chem. Asian J. 2011, 6, 964–984.

[82]

Wu, F.; Zhang, Y.; Huang, L.; Xu, D.; Wang, H. Y. A fluorescence-enhanced probe for rapid detection of formaldehyde and its application for cell imaging. Anal. Methods 2017, 9, 5472–5477.

[83]

Cheng, H. R.; Zou, L. W.; Yang, L.; Wang, Z. G.; Lu, X. J. A turn-on fluorescence probe for rapid, sensitive and visual detection of formaldehyde. ChemistrySelect 2019, 4, 432–436.

[84]

Zhu, R. F.; Zhang, G.; Jing, M.; Han, Y.; Li, J. F.; Zhao, J. Y.; Li, Y. L.; Chen, P. R. Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nat. Commun. 2021, 12, 581.

[85]

He, L. W.; Yang, X. L.; Ren, M. G.; Kong, X. Q.; Liu, Y.; Lin, W. Y. An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors. Chem. Commun. 2016, 52, 9582–9585.

[86]

Xu, H.; Xu, H.; Ma, S. N.; Chen, X. N.; Huang, L. X.; Chen, J. W.; Gao, F.; Wang, R.; Lou, K. Y.; Wang, W. Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity. J. Am. Chem. Soc. 2018, 140, 16408–16412.

[87]

Bi, A. Y.; Liu, M.; Huang, S.; Zheng, F.; Ding, J. P.; Wu, J. Y.; Tang, G.; Zeng, W. B. Construction and theoretical insights into the ESIPT fluorescent probe for imaging formaldehyde in vitro and in vivo. Chem. Commun. 2021, 57, 3496–3499.

[88]

Ma, Y. Y.; Gao, W. J.; Zhu, L. L.; Zhao, Y. P.; Lin, W. Y. Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo. Chem. Commun. 2019, 55, 11263–11266.

[89]

Wang, M. Z.; Liu, Q. L.; Sun, X.; Zheng, S.; Ma, Y. Y.; Wang, Y.; Yan, M.; Lu, Z. L.; Fan, C. H.; Lin, W. Y. Ratiometric and reversible detection of endogenous SO2 and HCHO in living cells and mice by a near-infrared and dual-emission fluorescent probe. Sens. Actuators B 2021, 335, 129649.

[90]

Zhu, H. C.; Zhang, X.; Liu, C. Y.; Zhang, Y.; Su, M. J.; Rong, X. D.; Wang, X.; Liu, M. Y.; Zhang, X. H.; Sheng, W. L. et al. A reversible NIR fluorescent probe for monitoring of SO2 and formaldehyde in live cells and zebrafish. Sens. Actuators B 2022, 366, 131962.

[91]

Tang, Y. H.; Ma, Y. Y.; Yin, J. L.; Lin, W. Y. Strategies for designing organic fluorescent probes for biological imaging of reactive carbonyl species. Chem. Soc. Rev. 2019, 48, 4036–4048.

[92]

Sun, Y. Q.; Sun, P. J.; Li, Z. H.; Qu, L. H.; Guo, W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem. Soc. Rev. 2022, 51, 7170–7205.

[93]

Huang, S. M.; Li, Z. J.; Liu, M. H.; Zhou, M. J.; Weng, J. T.; He, Y.; Jiang, Y.; Zhang, H. T.; Sun, H. Y. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging. Chem. Commun. 2022, 58, 1442–1453.

[94]

Yao, S.; Belfield, K. D. Two-photon fluorescent probes for bioimaging. Eur. J. Org. Chem. 2012, 2012, 3199–3217.

[95]

Niu, W. F.; Guo, L.; Li, Y. H.; Shuang, S. M.; Dong, C.; Wong, M. S. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal. Chem. 2016, 88, 1908–1914.

[96]

Jiang, L. R.; Hu, Q.; Chen, T. H.; Min, D. Y.; Yuan, H. Q.; Bao, G. M. Highly sensitive and rapid responsive fluorescence probe for determination of formaldehyde in seafood and in vivo imaging application. Spectrochim. Acta Part A 2020, 228, 117789.

[97]

Ding, N.; Li, Z.; Hao, Y. T.; Zhang, C. X. Design of a new hydrazine moiety-based near-infrared fluorescence probe for detection and imaging of endogenous formaldehyde in vivo. Anal. Chem. 2022, 94, 12120–12126.

[98]

Wang, P. Z.; Cheng, X. H.; Xiong, J. H.; Mao, Z. Q.; Liu, Z. H. Revealing formaldehyde fluxes in Alzheimer’s disease brain by an activity-based fluorescence probe. Chin. J. Chem. 2022, 40, 1457–1463.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2023
Revised: 18 April 2023
Accepted: 20 April 2023
Published: 13 June 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52173138), Natural Science Foundation of Hubei Province (No. 2021CFB298), and Natural Science Foundation of Shandong Province (No. ZR2021ME015).

Return