Journal Home > Volume 16 , Issue 8

Triboelectric nanogenerator (TENG) has made significant progress in wind energy harvesting. As the most advantageous rotary TENG among wind energy harvesters, the severe material wear and the output that fluctuates with wind speed seriously hinder the application of TENG wind energy harvesters. In this study, we propose a round-trip oscillation triboelectric nanogenerator (RTO-TENG) consisting of a crank transmission mechanism and a power generation unit. The RTO-TENG utilizes a simple crank transmission mechanism combined with a zigzag-laminated triboelectric nanogenerator (Z-TENG) to achieve high-performance constant output and low material wear. The crank transmission mechanism can realize the transformation from circular motion to arc reciprocating motion, converting the random wind energy into bi-directional kinetic energy, driving the vertical contact and separation of the Z-TENG. Due to the low transmission ratio (1:1) of the crank transmission mechanism and the consistent frequency of the Z-TENG contact–separation with that of the pendulum, the RTO-TENG’s power generation unit (10 Z-TENGs) is insensitive to changes in wind speed, resulting in a constant and stable output response at various speeds. After 480,000 cycles, the output of RTO-TENG decreased by only 0.9% compared to the initial value of 6 μC, and the scanning electron microscopy (SEM) images of the polytetrafluoroethylene (PTFE) film showed no significant wear on the surface of the friction layer, demonstrating excellent output stability and abrasion resistance of the RTO-TENG wind energy collector’s material. The equipped energy management module, based on a gas discharge tube switch, can further enhance the output performance of the RTO-TENG. After optimizing its inductor parameter L to match the load capacitor, it can charge a 220 μF load capacitor to 13.4 V in 40 s, resulting in a 298% improvement in charging speed compared to the voltage of 4.48 V without the management module. Therefore, the RTO-TENG can efficiently provide power to low-power small electronic devices for Internet of Things (IoTs), such as road traffic warning signs and thermo-hygrometers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Round-trip oscillation triboelectric nanogenerator with high output response and low wear to harvest random wind energy

Show Author's information Xinyu Hu1,2Junrui Feng1,2Chuangjian Liang1Heng Ning1Chunjin Chen1Jiayu Li1Honggui Wen1Huilu Yao1Lingyu Wan1Guanlin Liu1( )
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Abstract

Triboelectric nanogenerator (TENG) has made significant progress in wind energy harvesting. As the most advantageous rotary TENG among wind energy harvesters, the severe material wear and the output that fluctuates with wind speed seriously hinder the application of TENG wind energy harvesters. In this study, we propose a round-trip oscillation triboelectric nanogenerator (RTO-TENG) consisting of a crank transmission mechanism and a power generation unit. The RTO-TENG utilizes a simple crank transmission mechanism combined with a zigzag-laminated triboelectric nanogenerator (Z-TENG) to achieve high-performance constant output and low material wear. The crank transmission mechanism can realize the transformation from circular motion to arc reciprocating motion, converting the random wind energy into bi-directional kinetic energy, driving the vertical contact and separation of the Z-TENG. Due to the low transmission ratio (1:1) of the crank transmission mechanism and the consistent frequency of the Z-TENG contact–separation with that of the pendulum, the RTO-TENG’s power generation unit (10 Z-TENGs) is insensitive to changes in wind speed, resulting in a constant and stable output response at various speeds. After 480,000 cycles, the output of RTO-TENG decreased by only 0.9% compared to the initial value of 6 μC, and the scanning electron microscopy (SEM) images of the polytetrafluoroethylene (PTFE) film showed no significant wear on the surface of the friction layer, demonstrating excellent output stability and abrasion resistance of the RTO-TENG wind energy collector’s material. The equipped energy management module, based on a gas discharge tube switch, can further enhance the output performance of the RTO-TENG. After optimizing its inductor parameter L to match the load capacitor, it can charge a 220 μF load capacitor to 13.4 V in 40 s, resulting in a 298% improvement in charging speed compared to the voltage of 4.48 V without the management module. Therefore, the RTO-TENG can efficiently provide power to low-power small electronic devices for Internet of Things (IoTs), such as road traffic warning signs and thermo-hygrometers.

Keywords: triboelectric nanogenerator, wind energy harvesting, bi-directional kinetic energy, gas discharge tube switch, round-trip oscillation structure

References(40)

[1]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[2]

Liu, L.; Guo, X. G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.

[3]

Wang, J. J.; Cui, P.; Zhang, J. J.; Ge, Y.; Liu, X. L.; Xuan, N. N.; Gu, G. Q.; Cheng, G.; Du, Z. L. A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy 2021, 89, 106320.

[4]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[5]

Liu, G. L.; Guo, H. Y.; Chen, L.; Wang, X.; Wei, D. P.; Hu, C. G. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res. 2016, 9, 3355–3363.

[6]

El-Khattam, W.; Salama, M. M. A. Distributed generation technologies, definitions and benefits. Electr. Power Syst. Res. 2004, 71, 119–128.

[7]

Wang, Z. L. Entropy theory of distributed energy for Internet of Things. Nano Energy 2019, 58, 669–672.

[8]

Liu, G. L.; Chen, J.; Guo, H. Y.; Lai, M. H.; Pu, X. J.; Wang, X.; Hu, C. G. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 2018, 11, 633–641.

[9]

Liu, G. L.; Liu, R. P.; Guo, H. Y.; Xi, Y.; Wei, D. P.; Hu, C. G. A novel triboelectric generator based on the combination of a waterwheel-like electrode with a spring steel plate for efficient harvesting of low-velocity rotational motion energy. Adv. Electron. Mater. 2016, 2, 1500448.

[10]

Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.

[11]

Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.

[12]

Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

[13]

Fu, X. P.; Bu, T. Z.; Li, C. L.; Liu, G. X.; Zhang, C. Overview of micro/nano-wind energy harvesters and sensors. Nanoscale 2020, 12, 23929–23944.

[14]

Barrows, S. E.; Homer, J. S.; Orrell, A. C. Valuing wind as a distributed energy resource: A literature review. Renew. Sust. Energy Rev. 2021, 152, 111678.

[15]

Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

[16]

Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sust. Energy Rev. 2000, 4, 315–374.

[17]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[18]
Li, H. H.; Liang, C. J.; Ning, H.; Liu, J. Q.; Zheng, C. Y.; Li, J. Y.; Yao, H. L.; Peng, Y.; Wan, L. Y.; Liu, G. L. O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas. Nano Energy 2022, 103, 107812.
[19]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[20]

Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

[21]

Feng, J. R.; Zhou, H. L.; Cao, Z.; Zhang, E. Y.; Xu, S. X.; Li, W. T.; Yao, H. L.; Wan, L. Y.; Liu, G. L. 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 2022, 9, 2204407.

[22]

Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461–9468.

[23]

Ren, Z. W.; Wang, Z. M.; Liu, Z. R.; Wang, L. F.; Guo, H. Y.; Li, L. L.; Li, S. T.; Chen, X. Y.; Tang, W.; Wang, Z. L. Energy harvesting from breeze wind (0.7–6 m·s−1) using ultra-stretchable triboelectric nanogenerator. Adv. Energy Mater. 2020, 10, 2001770.

[24]

Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780–1787.

[25]

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

[26]

Zhang, X. M.; Hu, J.; Yang, Q. X.; Yang, H. M.; Yang, H. K.; Li, Q. Y.; Li, X. C.; Hu, C. G.; Xi, Y.; Wang, Z. L. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 2021, 31, 2106527.

[27]

Xu, S. X.; Liu, G. L.; Wang, J. B.; Wen, H. G.; Cao, S.; Yao, H. L.; Wan, L. Y.; Wang, Z. L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103408.

[28]

Wang, Y.; Yang, E.; Chen, T. Y.; Wang, J. Y.; Hu, Z. Y.; Mi, J. C.; Pan, X. X.; Xu, M. Y. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020, 78, 105279.

[29]

Wang, S. H.; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.

[30]

Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

[31]

Zou, H. X.; Zhao, L. C.; Wang, Q.; Gao, Q. H.; Yan, G.; Wei, K. X.; Zhang, W. M. A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor. Nano Energy 2022, 95, 106990.

[32]

Yong, S.; Wang, J. Y.; Yang, L. J.; Wang, H. Q.; Luo, H.; Liao, R. J.; Wang, Z. L. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Adv. Energy Mater. 2021, 11, 2101194.

[33]

Luo, Y. J.; Chen, P. F.; Cao, L. N. Y.; Xu, Z. J.; Wu, Y.; He, G. F.; Jiang, T.; Wang, Z. L. Durability improvement of breeze-driven triboelectric–electromagnetic hybrid nanogenerator by a travel-controlled approach. Adv. Funct. Mater. 2022, 32, 2205710.

[34]

Zhao, K.; Sun, W. R.; Zhang, X. T.; Meng, J. K.; Zhong, M.; Qiang, L.; Liu, M. J.; Gu, B. N.; Chung, C. C.; Liu, M. C. et al. High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 2022, 91, 106649.

[35]

Han, J. J.; Feng, Y. W.; Chen, P. F.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z. L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580.

[36]

Wang, J. Y.; Ding, W. B.; Pan, L.; Wu, C. S.; Yu, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 2018, 12, 3954–3963.

[37]

Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

[38]

Li, S. M.; Wang, S. H.; Zi, Y. L.; Wen, Z.; Lin, L.; Zhang, G.; Wang, Z. L. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 2015, 9, 7479–7487.

[39]

Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Guo, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.

[40]

Joselin Herbert, G. M.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sust. Energy Rev. 2007, 11, 1117–1145.

Video
12274_2023_5757_MOESM1_ESM.mp4
12274_2023_5757_MOESM2_ESM.mp4
12274_2023_5757_MOESM3_ESM.mp4
12274_2023_5757_MOESM4_ESM.mp4
12274_2023_5757_MOESM5_ESM.mp4
File
12274_2023_5757_MOESM6_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2023
Revised: 11 March 2023
Accepted: 19 April 2023
Published: 02 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The research was supported by the Natural Science Foundation of Guangxi Province (No. 2021GXNSFAA075009), the Specific Research Project of Guangxi for Research Bases and Talents (No. GUIKEAD22035178), and the National Key R&D Project from Minister of Science and Technology (No. 2021YFA1201603).

Return