Journal Home > Volume 16 , Issue 7

Dissociation of active H species over the catalytic sites with the carbon-supported Pt metals as the mainstream catalysts is crucial to facilitate hydrogen donation and accelerate the hydrogen addition process in catalytic hydrogenation systems to produce polymers, pharmaceuticals, agrochemicals, fragrances, and biofuels at million-ton scale. Much attention has been paid to the design of the more active catalytic site to effectively adsorb and activate reactants and H2 molecules. At the same time, there is still a huge room to develop powerful strategies to accelerate the donation of acted H species to the reactants from the Pt surface further to boost the final catalytic efficiencies of Pt catalysts and depress the total Pt consumption. Herein, we present a new strategy for promoting the Pt–H bond dissociation by increasing surface hydrogen coverage on designed electron-deficient Pt nanoparticles. The electron deficiency of Pt nanoparticles has been successfully tuned by constructing a rectifying contact with an even “noble” boron-rich carbon support (Pt/BC). Theoretical and experimental results confirm the dominant role of the pronounced electron deficiencies of Pt nanoparticles in enhancing the H coverage for 2.3 times higher than that of neutral Pt nanoparticles, significantly boosting the Pt–H bond dissociation and thus the whole hydrogenation process as reflected by the extremely high turnover frequency (TOF) value of 388 h−1 at 30 °C and 10 bar H2 for phenol hydrogenation on the Pt/BC, outperforming the bench-marked catalysts by a factor of 9.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tunable hydrogen coverage on electron-deficient platinum nanoparticles for efficient hydrogenation reactions

Show Author's information Lu-Han Sun1Qi-Yuan Li1Yu-Shuai Xu1Si-Yuan Xia1Dong Xu1Xiu Lin1Jingsan Xu2Jie-Sheng Chen1Guo-Dong Li3Xin-Hao Li1( )
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
School of Chemistry and Physics, Faculty of Science, Centre for Materials Science , Queensland University of Technology, Brisbane, QLD 4001, Australia
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

Abstract

Dissociation of active H species over the catalytic sites with the carbon-supported Pt metals as the mainstream catalysts is crucial to facilitate hydrogen donation and accelerate the hydrogen addition process in catalytic hydrogenation systems to produce polymers, pharmaceuticals, agrochemicals, fragrances, and biofuels at million-ton scale. Much attention has been paid to the design of the more active catalytic site to effectively adsorb and activate reactants and H2 molecules. At the same time, there is still a huge room to develop powerful strategies to accelerate the donation of acted H species to the reactants from the Pt surface further to boost the final catalytic efficiencies of Pt catalysts and depress the total Pt consumption. Herein, we present a new strategy for promoting the Pt–H bond dissociation by increasing surface hydrogen coverage on designed electron-deficient Pt nanoparticles. The electron deficiency of Pt nanoparticles has been successfully tuned by constructing a rectifying contact with an even “noble” boron-rich carbon support (Pt/BC). Theoretical and experimental results confirm the dominant role of the pronounced electron deficiencies of Pt nanoparticles in enhancing the H coverage for 2.3 times higher than that of neutral Pt nanoparticles, significantly boosting the Pt–H bond dissociation and thus the whole hydrogenation process as reflected by the extremely high turnover frequency (TOF) value of 388 h−1 at 30 °C and 10 bar H2 for phenol hydrogenation on the Pt/BC, outperforming the bench-marked catalysts by a factor of 9.

Keywords: Schottky barrier, heterogeneous catalysis, hydrogenation, hydrogen coverage

References(40)

[1]

Peng, C.; Tang, X. J.; Gong, X. Y.; Dai, Y. Y.; Sun, H. W.; Wang, L. Development and application of a mass spectrometry method for quantifying nylon microplastics in environment. Anal. Chem. 2020, 92, 13930–13935.

[2]
Bonrath, W.; Medlock, J.; Schütz, J.; Wüstenberg, B.; Netscher, T. Hydrogenation in the vitamins and fine chemicals industry—An overview. In Hydrogenation; Karamé, I., Ed.; IntechOpen Press: Rijeka, 2012; pp 69–90.
[3]

Nilges, P.; Schröder, U. Electrochemistry for biofuel generation: Production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 2013, 6, 2925–2931.

[4]

Chandrashekhar, V. G.; Senthamarai, T.; Kadam, R. G.; Malina, O.; Kašlík, J.; Zbořil, R.; Gawande, M. B.; Jagadeesh, R. V.; Beller, M. Silica-supported Fe/Fe-O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nat. Catal. 2022, 5, 20–29.

[5]

Ryabchuk, P.; Agostini, G.; Pohl, M. M.; Lund, H.; Agapova, A.; Junge, H.; Junge, K.; Beller, M. Intermetallic nickel silicide nanocatalyst—A non-noble metal-based general hydrogenation catalyst. Sci. Adv. 2018, 4, eaat0761.

[6]

Liu, W. P.; Li, W.; Spannenberg, A.; Junge, K.; Beller, M. Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nat. Catal. 2019, 2, 523–528.

[7]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

[8]

Lin, L. L.; Yao, S. Y.; Gao, R.; Liang, X.; Yu, Q. L.; Deng, Y. C.; Liu, J. J.; Peng, M.; Jiang, Z.; Li, S. W. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 2019, 14, 354–361.

[9]

Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

[10]

Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 2009, 326, 1250–1252.

[11]

Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.

[12]

Cui, X. J.; Huang, Z. J.; van Muyden, A. P.; Fei, Z. F.; Wang, T.; Dyson, P. J. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1 (111) facets. Sci. Adv. 2020, 6, eabb3831.

[13]

Lee, J. D.; Qi, Z.; Foucher, A. C.; Ngan, H. T.; Dennis, K.; Cui, J.; Sadykov, I. I.; Crumlin, E. J.; Sautet, P.; Stach, E. A. et al. Facilitating hydrogen dissociation over dilute nanoporous Ti-Cu catalysts. J. Am. Chem. Soc. 2022, 144, 16778–16791.

[14]

Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

[15]

Xiong, Z. S.; Sun, B. B.; Zou, H. B.; Wang, R. W.; Fang, Q. R.; Zhang, Z. T.; Qiu, S. L. Amorphous-to-crystalline transformation: General synthesis of hollow structured covalent organic frameworks with high crystallinity. J. Am. Chem. Soc. 2022, 144, 6583–6593.

[16]

Büchele, S.; Chen, Z. P.; Fako, E.; Krumeich, F.; Hauert, R.; Safonova, O. V.; López, N.; Mitchell, S.; Pérez-Ramírez, J. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19639–19644.

[17]

Yu, J.; Chen, W. M.; Li, K. X.; Zhang, C. H.; Li, M. Z.; He, F.; Jiang, L.; Li, Y. L.; Song, W. G.; Cao, C. Y. Graphdiyne nanospheres as a wettability and electron modifier for enhanced hydrogenation catalysis. Angew. Chem., Int. Ed. 2022, 61, e202207255.

[18]

Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.

[19]

Zhang, K. L.; Meng, Q. L.; Wu, H. H.; Yan, J.; Mei, X. L.; An, P. F.; Zheng, L. R.; Zhang, J.; He, M. Y.; Han, B. X. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834–20846.

[20]

Dasgupta, A.; He, H. R.; Gong, R. S.; Shang, S. L.; Zimmerer, E. K.; Meyer, R. J.; Liu, Z. K.; Janik, M. J.; Rioux, R. M. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523–529.

[21]

Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W. Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013, 3, 2440–2448.

[22]

Chen, H.; Xiong, C. Y.; Moon, J.; Ivanov, A. S.; Lin, W. W.; Wang, T.; Fu, J.; Jiang, D. E.; Wu, Z. L.; Yang, Z. Z.; Dai, S. Defect-regulated frustrated-lewis-pair behavior of boron nitride in ambient pressure hydrogen activation. J. Am. Chem. Soc. 2022, 144, 10688–10693.

[23]

Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Hydrogenation of arenes by dual activation: Reduction of substrates ranging from benzene to C60 fullerene under ambient conditions. Angew. Chem., Int. Ed. 2008, 47, 8615–8617.

[24]

Chen, Y. Z.; Kong, X. Q.; Mao, S. J.; Wang, Z.; Gong, Y. T.; Wang, Y. Study of the role of alkaline sodium additive in selective hydrogenation of phenol. Chin. J. Catal. 2019, 40, 1516–1524.

[25]

Cheng, G. H.; Jentys, A.; Gutiérrez, O. Y.; Liu, Y.; Chin, Y. H.; Lercher, J. A. Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nat. Catal. 2021, 4, 976–985.

[26]

Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.

[27]

Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

[28]

Teschner, D.; Révay, Z.; Borsodi, J.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Milroy, D.; Jackson, S. D.; Torres, D.; Sautet, P. Understanding palladium hydrogenation catalysts: When the nature of the reactive molecule controls the nature of the catalyst active phase. Angew. Chem., Int. Ed. 2008, 47, 9274–9278.

[29]

Xu, D.; Lin, X.; Li, Q. Y.; Zhang, S. N.; Xia, S. Y.; Zhai, G. Y.; Chen, J. S.; Li, X. H. Boosting mass exchange between Pd/NC and MoC/NC dual junctions via electron exchange for cascade CO2 fixation. J. Am. Chem. Soc. 2022, 144, 5418–5423.

[30]

Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem., Int. Ed. 2021, 60, 25766–25770.

[31]

Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

[32]

Xu, D.; Zhang, S. N.; Chen, J. S.; Li, X. H. Design of the synergistic rectifying interfaces in Mott–Schottky catalysts. Chem. Rev., 2023, 123, 1–30.

[33]

Lin, X.; Zhang, S. N.; Xu, D.; Zhang, J. J.; Lin, Y. X.; Zhai, G. Y.; Su, H.; Xue, Z. H.; Liu, X.; Antonietti, M. et al. Electrochemical activation of C–H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nat. Commun. 2021, 12, 3882.

[34]

Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.

[35]

Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.

[36]

Lei, W. W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127.

[37]

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

[38]

Li, G. F.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. Role of dissociation of phenol in its selective hydrogenation on Pt (111) and Pd (111). ACS Catal. 2015, 5, 2009–2016.

[39]

Cui, X. J.; Surkus, A. E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326.

[40]

Zhang, H. W.; Han, A. J.; Okumura, K.; Zhong, L. X.; Li, S. Z.; Jaenicke, S.; Chuah, G. K. Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. J. Catal. 2018, 364, 354–365.

File
12274_2023_5756_MOESM1_ESM.pdf (1.9 MB)
12274_2023_5756_MOESM2_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2023
Revised: 30 March 2023
Accepted: 18 April 2023
Published: 18 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Shanghai Science and Technology Committee (No. 20520711600), the National Natural Science Foundation of China (Nos. 22071146 and 21931005), the SJTU-MPI partner group, and the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University, China, No. 2021-1).

Return