Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Dissociation of active H species over the catalytic sites with the carbon-supported Pt metals as the mainstream catalysts is crucial to facilitate hydrogen donation and accelerate the hydrogen addition process in catalytic hydrogenation systems to produce polymers, pharmaceuticals, agrochemicals, fragrances, and biofuels at million-ton scale. Much attention has been paid to the design of the more active catalytic site to effectively adsorb and activate reactants and H2 molecules. At the same time, there is still a huge room to develop powerful strategies to accelerate the donation of acted H species to the reactants from the Pt surface further to boost the final catalytic efficiencies of Pt catalysts and depress the total Pt consumption. Herein, we present a new strategy for promoting the Pt–H bond dissociation by increasing surface hydrogen coverage on designed electron-deficient Pt nanoparticles. The electron deficiency of Pt nanoparticles has been successfully tuned by constructing a rectifying contact with an even “noble” boron-rich carbon support (Pt/BC). Theoretical and experimental results confirm the dominant role of the pronounced electron deficiencies of Pt nanoparticles in enhancing the H coverage for 2.3 times higher than that of neutral Pt nanoparticles, significantly boosting the Pt–H bond dissociation and thus the whole hydrogenation process as reflected by the extremely high turnover frequency (TOF) value of 388 h−1 at 30 °C and 10 bar H2 for phenol hydrogenation on the Pt/BC, outperforming the bench-marked catalysts by a factor of 9.
Peng, C.; Tang, X. J.; Gong, X. Y.; Dai, Y. Y.; Sun, H. W.; Wang, L. Development and application of a mass spectrometry method for quantifying nylon microplastics in environment. Anal. Chem. 2020, 92, 13930–13935.
Nilges, P.; Schröder, U. Electrochemistry for biofuel generation: Production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 2013, 6, 2925–2931.
Chandrashekhar, V. G.; Senthamarai, T.; Kadam, R. G.; Malina, O.; Kašlík, J.; Zbořil, R.; Gawande, M. B.; Jagadeesh, R. V.; Beller, M. Silica-supported Fe/Fe-O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nat. Catal. 2022, 5, 20–29.
Ryabchuk, P.; Agostini, G.; Pohl, M. M.; Lund, H.; Agapova, A.; Junge, H.; Junge, K.; Beller, M. Intermetallic nickel silicide nanocatalyst—A non-noble metal-based general hydrogenation catalyst. Sci. Adv. 2018, 4, eaat0761.
Liu, W. P.; Li, W.; Spannenberg, A.; Junge, K.; Beller, M. Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nat. Catal. 2019, 2, 523–528.
Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.
Lin, L. L.; Yao, S. Y.; Gao, R.; Liang, X.; Yu, Q. L.; Deng, Y. C.; Liu, J. J.; Peng, M.; Jiang, Z.; Li, S. W. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 2019, 14, 354–361.
Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.
Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 2009, 326, 1250–1252.
Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.
Cui, X. J.; Huang, Z. J.; van Muyden, A. P.; Fei, Z. F.; Wang, T.; Dyson, P. J. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1 (111) facets. Sci. Adv. 2020, 6, eabb3831.
Lee, J. D.; Qi, Z.; Foucher, A. C.; Ngan, H. T.; Dennis, K.; Cui, J.; Sadykov, I. I.; Crumlin, E. J.; Sautet, P.; Stach, E. A. et al. Facilitating hydrogen dissociation over dilute nanoporous Ti-Cu catalysts. J. Am. Chem. Soc. 2022, 144, 16778–16791.
Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.
Xiong, Z. S.; Sun, B. B.; Zou, H. B.; Wang, R. W.; Fang, Q. R.; Zhang, Z. T.; Qiu, S. L. Amorphous-to-crystalline transformation: General synthesis of hollow structured covalent organic frameworks with high crystallinity. J. Am. Chem. Soc. 2022, 144, 6583–6593.
Büchele, S.; Chen, Z. P.; Fako, E.; Krumeich, F.; Hauert, R.; Safonova, O. V.; López, N.; Mitchell, S.; Pérez-Ramírez, J. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19639–19644.
Yu, J.; Chen, W. M.; Li, K. X.; Zhang, C. H.; Li, M. Z.; He, F.; Jiang, L.; Li, Y. L.; Song, W. G.; Cao, C. Y. Graphdiyne nanospheres as a wettability and electron modifier for enhanced hydrogenation catalysis. Angew. Chem., Int. Ed. 2022, 61, e202207255.
Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.
Zhang, K. L.; Meng, Q. L.; Wu, H. H.; Yan, J.; Mei, X. L.; An, P. F.; Zheng, L. R.; Zhang, J.; He, M. Y.; Han, B. X. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834–20846.
Dasgupta, A.; He, H. R.; Gong, R. S.; Shang, S. L.; Zimmerer, E. K.; Meyer, R. J.; Liu, Z. K.; Janik, M. J.; Rioux, R. M. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523–529.
Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W. Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013, 3, 2440–2448.
Chen, H.; Xiong, C. Y.; Moon, J.; Ivanov, A. S.; Lin, W. W.; Wang, T.; Fu, J.; Jiang, D. E.; Wu, Z. L.; Yang, Z. Z.; Dai, S. Defect-regulated frustrated-lewis-pair behavior of boron nitride in ambient pressure hydrogen activation. J. Am. Chem. Soc. 2022, 144, 10688–10693.
Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Hydrogenation of arenes by dual activation: Reduction of substrates ranging from benzene to C60 fullerene under ambient conditions. Angew. Chem., Int. Ed. 2008, 47, 8615–8617.
Chen, Y. Z.; Kong, X. Q.; Mao, S. J.; Wang, Z.; Gong, Y. T.; Wang, Y. Study of the role of alkaline sodium additive in selective hydrogenation of phenol. Chin. J. Catal. 2019, 40, 1516–1524.
Cheng, G. H.; Jentys, A.; Gutiérrez, O. Y.; Liu, Y.; Chin, Y. H.; Lercher, J. A. Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nat. Catal. 2021, 4, 976–985.
Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.
Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.
Teschner, D.; Révay, Z.; Borsodi, J.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Milroy, D.; Jackson, S. D.; Torres, D.; Sautet, P. Understanding palladium hydrogenation catalysts: When the nature of the reactive molecule controls the nature of the catalyst active phase. Angew. Chem., Int. Ed. 2008, 47, 9274–9278.
Xu, D.; Lin, X.; Li, Q. Y.; Zhang, S. N.; Xia, S. Y.; Zhai, G. Y.; Chen, J. S.; Li, X. H. Boosting mass exchange between Pd/NC and MoC/NC dual junctions via electron exchange for cascade CO2 fixation. J. Am. Chem. Soc. 2022, 144, 5418–5423.
Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem., Int. Ed. 2021, 60, 25766–25770.
Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.
Xu, D.; Zhang, S. N.; Chen, J. S.; Li, X. H. Design of the synergistic rectifying interfaces in Mott–Schottky catalysts. Chem. Rev., 2023, 123, 1–30.
Lin, X.; Zhang, S. N.; Xu, D.; Zhang, J. J.; Lin, Y. X.; Zhai, G. Y.; Su, H.; Xue, Z. H.; Liu, X.; Antonietti, M. et al. Electrochemical activation of C–H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nat. Commun. 2021, 12, 3882.
Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.
Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.
Lei, W. W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127.
Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.
Li, G. F.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. Role of dissociation of phenol in its selective hydrogenation on Pt (111) and Pd (111). ACS Catal. 2015, 5, 2009–2016.
Cui, X. J.; Surkus, A. E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326.
Zhang, H. W.; Han, A. J.; Okumura, K.; Zhong, L. X.; Li, S. Z.; Jaenicke, S.; Chuah, G. K. Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. J. Catal. 2018, 364, 354–365.