Journal Home > Volume 16 , Issue 8

Bimetallic nanocluster with atomic precision has gained widespread attention due to its unique synergism. The coreless Au4Cu5 bimetallic nanoclusters were selected as models to explore the relationship between their microstructure and performance, and compare with the coreless monometallic nanoclusters, core–shell nanoclusters, and single atom catalyst (SAC). The experimental results show that the coreless bimetallic nanocluster catalyst Au4Cu5/activated carbon (AC) exhibits high activity and stability in the Ullmann C–O coupling reaction, much higher than coreless monometallic nanoclusters (Au11/AC and Cu11/AC), core–shell nanoclusters (Au25/AC, Cu25/AC, and Au1Cu24/AC), and single atom catalysts (Au SAC and Cu SAC). Moreover, the coreless Au4Cu5/AC catalyst efficiently catalyzed the Ullmann C–O coupling of benzyl alcohol for the first time. This structure–activity relationship was successfully extended to other coreless bimetallic systems, such as Au4Cu4/AC nanocluster, and it is expected to provide new insights for the design of bimetallic catalysts with well-defined performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically precise coreless AuCu bimetallic nanoclusters for Ullmann C–O coupling

Show Author's information Yapei Yun1,§Lin Li1,§Manman Zhou1Meng Li1Ningning Sun1Haifeng Li1Shan Jin1Chunshan Zuo2( )Hongting Sheng1( )Manzhou Zhu1( )
School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institutes of Physical Science and Information Technology, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei 230601, China
College of Pharmaceutical and Chemical Enginnering, Huanghuai University, Zhumadian 463000, China

§ Yapei Yun and Lin Li contributed equally to this work.

Abstract

Bimetallic nanocluster with atomic precision has gained widespread attention due to its unique synergism. The coreless Au4Cu5 bimetallic nanoclusters were selected as models to explore the relationship between their microstructure and performance, and compare with the coreless monometallic nanoclusters, core–shell nanoclusters, and single atom catalyst (SAC). The experimental results show that the coreless bimetallic nanocluster catalyst Au4Cu5/activated carbon (AC) exhibits high activity and stability in the Ullmann C–O coupling reaction, much higher than coreless monometallic nanoclusters (Au11/AC and Cu11/AC), core–shell nanoclusters (Au25/AC, Cu25/AC, and Au1Cu24/AC), and single atom catalysts (Au SAC and Cu SAC). Moreover, the coreless Au4Cu5/AC catalyst efficiently catalyzed the Ullmann C–O coupling of benzyl alcohol for the first time. This structure–activity relationship was successfully extended to other coreless bimetallic systems, such as Au4Cu4/AC nanocluster, and it is expected to provide new insights for the design of bimetallic catalysts with well-defined performance.

Keywords: bimetallic catalysts, coreless nanoclusters, metal synergy, Ullmann C–O coupling

References(46)

[1]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[2]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[3]

Sun, Y. N.; Cai, X.; Hu, W. G.; Liu, X.; Zhu, Y. Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Sci. China Chem. 2021, 64, 1065–1075.

[4]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu. M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[5]

Liu, X.; Astruc, D. Atomically precise copper nanoclusters and their applications. Coord. Chem. Rev. 2018, 359, 112–126.

[6]

Kawawaki, T.; Kataoka, Y.; Hirata, M.; Iwamatsu, Y.; Hossain, S.; Negishi, Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horiz. 2021, 6, 409–448.

[7]

Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

[8]

Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. 2023, 16, 2325–2346.

[9]

Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct. 2022, 3, 2200086.

[10]

Zhang, W. Q.; Qin, X. H.; Wei, T. R.; Liu, Q.; Luo, J.; Liu, X. J. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 2023, 638, 650–657.

[11]

Chai, J. S.; Yang, S.; Lv, Y.; Chong, H. B.; Yu, H. Z.; Zhu, M. Z. Exposing the delocalized Cu–S π bonds on the Au24Cu6(SPhtBu)22 nanocluster and its application in ring-opening reactions. Angew. Chem., Int. Ed. 2019, 58, 15671–15674.

[12]

Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal–organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A 2018, 6, 15371–15376.

[13]

Kawawaki, T.; Imai, Y.; Suzuki, D.; Kato, S.; Kobayashi, I.; Suzuki, T.; Kaneko, R.; Hossain, S.; Negishi, Y. Atomically precise alloy nanoclusters. Chem. Eur. J. 2020, 26, 16150–16193.

[14]

Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C–C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

[15]

Sun, L. L.; Shen, K. Q.; Sheng, H. T.; Yun, Y. P.; Song, Y. B.; Pan, D. H.; Du, Y. X.; Yu, H. Z.; Chen, M. Y.; Zhu, M. Z. Au-Ag synergistic effect in CF3-ketone alkynylation catalyzed by precise nanoclusters. J. Catal. 2019, 378, 220–225.

[16]

Chen, S.; Higaki, T.; Ma, H. D.; Zhu, M. Z.; Jin, R. C.; Wang, G. L. Inhomogeneous quantized single-electron charging and electrochemical-optical insights on transition-sized atomically precise gold nanoclusters. ACS Nano 2020, 14, 16781–16790.

[17]

Tang, J.; Liu, C.; Zhu, C. Y.; Sun, K. J.; Wang, H.; Yin, W.; Xu, C. T.; Li, Y.; Wang, W. G.; Wang, L. et al. High-nuclearity and thiol protected core–shell [Cu75(S-Adm)32]2+: Distorted octahedra fixed to Cu15 core via strong cuprophilic interactions. Nanoscale 2023, 15, 2843–2848.

[18]

Li, S. T.; Nagarajan, A. V.; Du, X. S.; Li, Y. W.; Liu, Z. Y.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202211771.

[19]

Zhou, Y.; Liao, L. W.; Zhuang, S. L.; Zhao, Y.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Xia, N.; Wu, Z. K. Traceless removal of two kernel atoms in a gold nanocluster and its impact on photoluminescence. Angew. Chem., Int. Ed. 2021, 60, 8668–8672.

[20]

Bootharaju, M. S.; Lee, S.; Deng, G. C.; Malola, S.; Baek, W.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. Ag44(EBT)26(TPP)4 nanoclusters with tailored molecular and electronic structure. Angew. Chem., Int. Ed. 2021, 60, 9038–9044.

[21]

Zhou, M. M.; Jin, S.; Wei, X.; Yuan, Q. Q.; Wang, S. X.; Du, Y. X.; Zhu, M. Z. Reversible Cu-S motif transformation and Au4 distortion via thiol ligand exchange engineering. J. Phys. Chem. C 2020, 124, 7531–7538.

[22]

Yu, W.; Hu, D. Q.; Xiong, L.; Li, Y. F.; Kang, X.; Chen, S.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Isomer structural transformation in Au-Cu alloy nanoclusters: Water ripple-like transfer of thiol ligands. Part. Part. Syst. Charact. 2019, 36, 1800494.

[23]

Hua, Y.; Huang, J. H.; Shao, Z. H.; Luo, X. M.; Wang, Z. Y.; Liu, J. Q.; Zhao, X. L.; Chen, X. Y.; Zang, S. Q. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater. 2022, 34, 2203734.

[24]

Zhang, T. S.; Fei, W. W.; Li, N.; Zhang, Y.; Xu, C.; Luo, Q. Q.; Li, M. B. Open nitrogen site-induced kinetic resolution and catalysis of a gold nanocluster. Nano Lett. 2023, 23, 235–242.

[25]

Liu, L.; Nevado, C. Diaryl ether formation merging photoredox and nickel catalysis. Organometallics 2021, 40, 2188–2193.

[26]

Singh, V. V.; Singh, A. K. Nanoflowers of Cu1.8S: Free and decorated on graphene oxide (GO-Cu1.8S) as efficient and recyclable catalysts for C–O coupling. ACS Appl. Nano Mater. 2018, 1, 2164–2174.

[27]

Muto, K.; Okita, T.; Yamaguchi, J. Transition-metal-catalyzed denitrative coupling of nitroarenes. ACS Catal. 2020, 10, 9856–9871.

[28]

Wang, Y. B.; Guo, X. N.; Lü, M. Q.; Zhai, Z. Y.; Wang, Y. Y.; Guo, X. Y. Cu2O/SiC as efficient catalyst for Ullmann coupling of phenols with aryl halides. Chin. J. Catal. 2017, 38, 658–664.

[29]

Gorginpour, F.; Zali-Boeini, H. Synergistic effect of copper nanocrystals-nanoparticles incorporated in a porous organic polymer for the Ullmann C–O coupling reaction. Mol. Catal. 2021, 504, 111460.

[30]

Begum, T.; Mondal, M.; Borpuzari, M. P.; Kar, R.; Gogoi, P. K.; Bora, U. Palladium-on-carbon-catalyzed coupling of nitroarenes with phenol: Biaryl ether synthesis and evidence of an oxidative-addition-promoted mechanism. Eur. J. Org. Chem. 2017, 16, 3244–3248.

[31]

Du, Y. Y.; Yao, F.; Tuo, Y.; Cai, M. Z. Highly efficient heterogeneous copper-catalysed O-arylation of phenols by nitroarenes leading to diaryl ethers. J. Chem. Res. 2017, 41, 725–729.

[32]

Maity, T.; Bhunia, S.; Das, S.; Koner, S. Heterogeneous O-arylation of nitroarenes with substituted phenols over a copper immobilized mesoporous silica catalyst. RSC Adv. 2016, 6, 33380–33386.

[33]

Zhao, J. B.; Jin, R. C. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today 2018, 18, 86–102.

[34]

Li, G.; Liu, C.; Lei, Y.; Jin, R. C. Au25 nanocluster-catalyzed Ullmann-type homocoupling reaction of aryl iodides. Chem. Commun. 2012, 48, 12005–12007.

[35]

Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.

[36]

Das, A. K.; Mukherjee, S.; R, S. S.; Nair, A. S.; Bhandary, S.; Chopra, D.; Sanyal, D.; Pathak, B.; Mandal, S. Defects engineering on ceria and C–C coupling reactions using [Au11(PPh3)7I3] nanocluster: A combined experimental and theoretical study. ACS Nano 2020, 14, 16681–16688.

[37]

Liu, L. L.; Song, Y. B.; Chong, H. B.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu, H. Z.; Zhu, M. Z. Size-confined growth of atom-precise nanoclusters in metal–organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407–1412.

[38]

Li, H.; Zhai, H. S.; Zhou, C. J.; Song, Y. B.; Ke, F.; Xu, W. W.; Zhu, M. Z. Atomically precise copper cluster with intensely near-infrared luminescence and its mechanism. J. Phys. Chem. Lett. 2020, 11, 4891–4896.

[39]

Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.

[40]

Chen, A. L.; Kang, X.; Jin, S.; Du, W. J.; Wang, S. X.; Zhu, M. Z. Gram-scale preparation of stable hydride M@Cu24 (M = Au/Cu) nanoclusters. J. Phys. Chem. Lett. 2019, 10, 6124–6128.

[41]

Mishra, D.; Aldeek, F.; Lochner, E.; Palui, G.; Zeng, B. R.; Mackowski, S.; Mattoussi, H. Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands. Langmuir, 2016, 32, 6445–6458.

[42]

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

[43]

Pieta, I. S.; Kadam, R. G.; Pieta, P.; Mrdenovic, D.; Nowakowski, R.; Bakandritsos, A.; Tomanec, O.; Petr, M.; Otyepka, M.; Kostecki, R. et al. The hallmarks of copper single atom catalysts in direct alcohol fuel cells and electrochemical CO2 fixation. Adv. Mater. Interfaces 2021, 8, 2001822.

[44]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[45]

Ma, S. H.; Han, Z.; Leng, K. Y.; Liu, X. J.; Wang, Y.; Qu, Y. T.; Bai, J. B. Ionic exchange of metal–organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small 2020, 16, 2001384.

[46]

Fang, Y. P.; Bao, K.; Zhang, P.; Sheng, H. T.; Yun, Y. P.; Hu, S. X.; Astruc, D.; Zhu, M. Z. Insight into the mechanism of the CuAAC reaction by capturing the crucial Au4Cu4-π-alkyne intermediate. J. Am. Chem. Soc. 2021, 143, 1768–1772.

File
12274_2023_5755_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2023
Revised: 10 April 2023
Accepted: 18 April 2023
Published: 15 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Nos. 21972001 and 21871001), Natural Science Foundation of Anhui Province (No. 2008085MB37), and Anhui University.

Return