Journal Home > Volume 16 , Issue 10

During the last decade, a great variety of ligand protected gold nanoclusters (AuNCs) have been synthesized, and their broad applications have been intensively reported. Although the spectroscopic properties of AuNCs have been comprehensively explored, the mechanism of the significant Stokes shift (> 200 nm) and the specific role played by surface ligands have not been clearly explained yet. In this study, a series of fluorescent AuNCs with huge Stokes shift (up to 530 nm) were successfully prepared by employing the rationally designed tri-peptides as the protecting ligands, and their spectroscopic properties were systematically investigated. The detailed measurements on the example product, YCY-AuNCs (Tyr-Cys-Tyr liganded AuNCs), showed that the energy absorbed by the tyrosine (~ 250 nm) can be effectively transferred through the ligand-mediated two-step Förster resonance energy transfer (FRET) process and released as fluorescence emission in the near-infrared fluorescence (NIR) range (~ 780 nm), which resulted in the significant apparent Stokes shift. The YCY ligands play a critical role by offering the tyrosine groups (donor of the first FRET pair), generating the dityrosine-like structure on the AuNCs surface (acceptor of the first FRET pair and donor of the second FRET pair), and protecting the cores (acceptor of the second acceptor). The additional ligand exchange experiments and the investigation on the other AuNCs further demonstrated that the sufficient high density of the aromatic groups is also essential to mediate the two-step FRET and achieve the remarkable Stokes shift. We believe that the aromatic ligand-mediated FRET mechanism not only offers a new theoretical explanation for the huge Stokes shift exhibited in AuNCs, but also provides a general strategy for the construction of new materials with large Stokes shift.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The aromatic peptide protected gold nanoclusters with significant Stokes shift: Ligand-mediated two-step FRET

Show Author's information Qi DaiZhiXiong ZhangBiao YuXinyu LiJingqiu LiZichun QiHua HeFang Huang( )Xiaojuan Wang( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

During the last decade, a great variety of ligand protected gold nanoclusters (AuNCs) have been synthesized, and their broad applications have been intensively reported. Although the spectroscopic properties of AuNCs have been comprehensively explored, the mechanism of the significant Stokes shift (> 200 nm) and the specific role played by surface ligands have not been clearly explained yet. In this study, a series of fluorescent AuNCs with huge Stokes shift (up to 530 nm) were successfully prepared by employing the rationally designed tri-peptides as the protecting ligands, and their spectroscopic properties were systematically investigated. The detailed measurements on the example product, YCY-AuNCs (Tyr-Cys-Tyr liganded AuNCs), showed that the energy absorbed by the tyrosine (~ 250 nm) can be effectively transferred through the ligand-mediated two-step Förster resonance energy transfer (FRET) process and released as fluorescence emission in the near-infrared fluorescence (NIR) range (~ 780 nm), which resulted in the significant apparent Stokes shift. The YCY ligands play a critical role by offering the tyrosine groups (donor of the first FRET pair), generating the dityrosine-like structure on the AuNCs surface (acceptor of the first FRET pair and donor of the second FRET pair), and protecting the cores (acceptor of the second acceptor). The additional ligand exchange experiments and the investigation on the other AuNCs further demonstrated that the sufficient high density of the aromatic groups is also essential to mediate the two-step FRET and achieve the remarkable Stokes shift. We believe that the aromatic ligand-mediated FRET mechanism not only offers a new theoretical explanation for the huge Stokes shift exhibited in AuNCs, but also provides a general strategy for the construction of new materials with large Stokes shift.

Keywords: gold nanoclusters, ligand effect, Förster resonance energy transfer (FRET), aromatic ligands, Stokes shift

References(54)

[1]

Cui, H.; Shao, Z. S.; Song, Z. N.; Wang, Y. B.; Wang, H. S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C. 2020, 8, 14312–14333.

[2]

Si, W. D.; Li, Y. Z.; Zhang, S. S.; Wang, S.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Toward controlled syntheses of diphosphine-protected homochiral gold nanoclusters through precursor engineering. ACS Nano. 2021, 15, 16019–16029.

[3]

Zhang, S. S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D. Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251–1258.

[4]

Zhang, S. S.; Senanayake, R. D.; Zhao, Q. Q.; Su, H. F.; Aikens, C. M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. [Au18(dppm)6Cl4]4+: A phosphine-protected gold nanocluster with rich charge states. Dalton Trans 2019, 48, 3635–3640.

[5]

Si, W. D.; Sheng, K.; Zhang, C. K.; Wang, Z.; Zhang, S. S.; Dou, J. M.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Bicarbonate insertion triggered self-assembly of chiral octa-gold nanoclusters into helical superstructures in the crystalline state. Chem. Sci. 2022, 13, 10523–10531.

[6]

Zhang, S. S.; Li, Y. Z.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C.; Sun, D. Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Res. 2021, 14, 3343–3351.

[7]

Chen, L. Y.; Wang, C. W.; Yuan, Z. Q.; Chang, H. T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229.

[8]

Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.

[9]

Bai, Y. L.; Shu, T.; Su, L.; Zhang, X. J. Fluorescent gold nanoclusters for biosensor and bioimaging application. Crystals. 2020, 10, 357.

[10]

Zhu, C. L.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: A trailblazing journey to the field of biomedicine. ACS Appl. Bio Mater. 2018, 1, 1768–1786.

[11]

Yang, T. Q.; Shan, B. Q.; Huang, F.; Yang, S. Q.; Peng, B.; Yuan, E. H.; Wu, P.; Zhang, K. P band intermediate state (PBIS) tailors photoluminescence emission at confined nanoscale interface. Commun. Chem. 2019, 2, 132.

[12]

Yang, T. Q.; Peng, B.; Shan, B. Q.; Zong, Y. X.; Jiang, J. G.; Wu, P.; Zhang, K. Origin of the photoluminescence of metal nanoclusters: From metal-centered emission to ligand-centered emission. Nanomaterials (Basel) 2020, 10, 261.

[13]

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

[14]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[15]
Zare, I.; Chevrier, D. M.; Cifuentes-Rius, A.; Moradi, N.; Xianyu, Y. L.; Ghosh, S.; Trapiella-Alfonso, L.; Tian, Y.; Shourangiz-Haghighi, A.; Mukherjee, S. et al. Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Mater. Today, in press, DOI: 10.1016/j.mattod.2020.10.027.
DOI
[16]

Guo, Y. H.; Amunyela, H. T. N. N.; Cheng, Y. L.; Xie, Y. F.; Yu, H.; Yao, W. R.; Li, H. W.; Qian, H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem. 2021, 335, 127657.

[17]

Yang, Y. Y.; Han, A. L.; Li, R. X.; Fang, G. Z.; Liu, J. F.; Wang, S. Synthesis of highly fluorescent gold nanoclusters and their use in sensitive analysis of metal ions. Analyst 2017, 142, 4486–4493.

[18]

Santiago-González, B.; Vázquez-Vázquez, C.; Blanco-Varela, M. C.; Gaspar Martinho, J. M.; Ramallo-López, J. M.; Requejo, F. G.; López-Quintela, M. A. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large Stokes shift. J. Colloid Interface Sci. 2015, 455, 154–162.

[19]

Madhuri, U. D.; Radhakrishnan, T. P. Gold nanoclusters with a wide range of fluorescence characteristics generated in situ in polymer thin films: Potential gas sensing application. Dalton Trans. 2017, 46, 16236–16243.

[20]

Aires, A.; Sousaraei, A.; Möller, M.; Cabanillas-Gonzalez, J.; Cortajarena, A. L. Boosting the photoluminescent properties of protein-stabilized gold nanoclusters through protein engineering. Nano Lett. 2021, 21, 9347–9353.

[21]

Li, C. G.; Chen, H.; Chen, B.; Zhao, G. H. Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Crit. Rev. Food Sci. Nutr. 2018, 58, 689–699.

[22]

Xu, Y. L.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y. P. The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale. 2014, 6, 1515–1524.

[23]

Raut, S.; Chib, R.; Butler, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I. Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters. Methods Appl. Fluoresc. 2014, 2, 035004.

[24]

Lopez-Martinez, E.; Gianolio, D.; Garcia-Orrit, S.; Vega-Mayoral, V.; Cabanillas-Gonzalez, J.; Sanchez-Cano, C.; Cortajarena, A. L. Tuning the optical properties of Au nanoclusters by designed proteins. Adv. Opt. Mater. 2022, 10, 2101332.

[25]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[26]

Wang, X. J.; He, H.; Wang, Y. A.; Wang, J. Y.; Sun, X.; Xu, H.; Nau, W. M.; Zhang, X. D.; Huang, F. Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 2016, 52, 9232–9235.

[27]

Wang, X. J.; Wang, Y. A.; He, H.; Ma, X. Q.; Chen, Q.; Zhang, S.; Ge, B. S.; Wang, S. J.; Nau, W. M.; Huang, F. Deep-red fluorescent gold nanoclusters for nucleoli staining: Real-time monitoring of the nucleolar dynamics in reverse transformation of malignant cells. ACS Appl. Mater. Interfaces 2017, 9, 17799–17806.

[28]

Wang, Y. N.; Wang, X. J.; Ma, X. Q.; Chen, Q.; He, H.; Nau, W. M.; Huang, F. Coassembly of gold nanoclusters with nucleic acids: Sensing, bioimaging, and gene transfection. Part. Part. Syst. Charact. 2019, 36, 1900281.

[29]

Ma, X. Q.; Wang, X. J.; Chen, Q.; He, H.; Sun, Y. X.; Liu, H.; Wang, Y. A.; Qu, J. B.; Huang, F. Glycosaminoglycan/gold nanocluster hybrid nanoparticles as a new sensing platform: Metastatic potential assessment of cancer cells. Carbohydr. Polym. 2020, 230, 115654.

[30]

Dai, Q.; Wang, X. J.; Liu, C.; Feng, Z. Z.; Ge, B. S.; Ma, X. Q.; Zhang, Z. X.; Yu, J. Y.; Wang, X. Q.; Huang, F. Detection of tyrosinase in living cells using an Enteromorpha Prolifera based fluorescent probe. Anal. Chim. Acta 2021, 1169, 338605.

[31]
Ma, X. Q.; Cai, D.; Zhang, Z. X.; Dai, Q.; Li, X. Y.; Yu, B.; Ge, B. S.; Liu, S. H.; Wang, X. J.; Huang, F. Peptidomimetic-liganded gold nanoclusters for controlled iron delivery and synergistic suppression of tumor growth. Nano Res., in press, DOI: 10.1007/s12274-022-5103-y.
DOI
[32]

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

[33]

Wang, Y. A.; Bürgi, T. Ligand exchange reactions on thiolate-protected gold nanoclusters. Nanoscale Adv. 2021, 3, 2710–2727.

[34]

Stopel, M. H. W.; Blum, C.; Subramaniam, V. Excitation spectra and stokes shift measurements of single organic dyes at room temperature. J. Phys. Chem. Lett. 2014, 5, 3259–3264.

[35]

Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427.

[36]

Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74, 141–173.

[37]

Pandey, K. K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. 3.0.CO;2-D">J. Appl. Polym. Sci. 1999, 71, 1969–1975.

[38]

Yu, Y.; Luo, Z. T.; Yu, Y.; Lee, J. Y.; Xie, J. P. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. ACS Nano 2012, 6, 7920–7927.

[39]

Zhang, P. X-ray spectroscopy of gold-thiolate nanoclusters. J. Phys. Chem. C 2014, 118, 25291–25299.

[40]

Zheng, Y. K.; Lai, L. M.; Liu, W. W.; Jiang, H.; Wang, X. M. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv. Colloid Interface Sci. 2017, 242, 1–16.

[41]

Halawa, M. I.; Lai, J.; Xu, G. Gold nanoclusters: Synthetic strategies and recent advances in fluorescent sensing. Mater. Today Nano. 2018, 3, 9–27.

[42]

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited:  Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

[43]

Fletcher, A. N. Quinine sulfate as a fluorescence quantum yield standard. Photochem. Photobiol. 1969, 9, 439–444.

[44]

Gan, Z. X.; Xu, H.; Hao, Y. L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges. Nanoscale 2016, 8, 7794–7807.

[45]
Ross, J. B. A.; Laws, W. R.; Rousslang, K. W.; Wyssbrod, H. R. Tyrosine fluorescence and phosphorescence from proteins and polypeptides. In Topics in Fluorescence Spectroscopy. Lakowicz, J. R. , Ed.; Springer: Boston, MA, 2002; pp 1–64.
[46]

Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.

[47]

Heinecke, J. W.; Li, W.; Daehnke III, H. L.; Goldstein, J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 1993, 268, 4069–4077.

[48]

Li, Q.; Zhou, M.; So, W. Y.; Huang, J. C.; Li, M. X.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z. et al. A Mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 2019, 141, 5314–5325.

[49]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[50]

Wu, Z. N.; Yao, Q. F.; Chai, O. J. H.; Ding, N.; Xu, W.; Zang, S. Q.; Xie, J. P. Unraveling the impact of Gold(I)-thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 9934–9939.

[51]

Yuan, J.; Wang, L.; Wang, Y. T.; Hao, J. C. Stimuli-responsive fluorescent nanoswitches: Solvent-induced emission enhancement of copper nanoclusters. Chem. —Eur. J. 2020, 26, 3545–3554.

[52]

Charron, D. M.; Zheng, G. Nanomedicine development guided by FRET imaging. Nano Today 2018, 18, 124–136.

[53]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.

[54]

Chen, Y.; Barkley, M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry 1998, 37, 9976–9982.

File
12274_2023_5754_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2023
Revised: 17 April 2023
Accepted: 18 April 2023
Published: 10 June 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the Qingdao Municipal People’s Livelihood Science and Technology Project (No. 17-3-3-76-nsh), the National Natural Science Foundation of China (No. 21673294), the Natural Science Foundation of Shandong Province (No. ZR2019ZD17), and the Key Technologies R&D Program of Shandong Province (No. 2019GSF108159).

Return