Journal Home > Volume 16 , Issue 7

Direct ethanol fuel cells (DEFCs) have received increasing attention as one of the most promising energy conversion devices. However, developing catalysts with high activity, long durability and strong anti-poisoning ability for ethanol oxidation is still challenging. Here, using Pd nanosheets as sacrificial templates, we have successfully synthesized PdPtBi networked nanowires (NWs) to improve the activity and stability for ethanol oxidation reaction (EOR) due to the addition of Bi. Density functional theory (DFT) calculations demonstrated the downshift of d-band center of Pd, which is beneficial to suppress CO poisoning and boost reaction kinetics for EOR. Impressively, the PdPtBi networked NWs exhibited the highest activity (11.08 A·mgPd+Pt−1 and 92.52 mA·cm−2) with an enhancement of 4.4 and 17.5 times relative to those of Pd/C, respectively and best stability with a 47.2% left versus only a 5.8% left for Pd/C of mass activity after 3,600 s towards EOR. This work deepens the understanding of controllable preparation of networked NWs and provides an effective strategy to design advanced catalysts with high activity and stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

PdPtBi networked nanowires derived from Pd nanosheets as efficient catalysts for ethanol oxidation

Show Author's information Ningkang Qian1Liang Ji1Junjie Li1Hui Zhang1,2( )Deren Yang1,2
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China

Abstract

Direct ethanol fuel cells (DEFCs) have received increasing attention as one of the most promising energy conversion devices. However, developing catalysts with high activity, long durability and strong anti-poisoning ability for ethanol oxidation is still challenging. Here, using Pd nanosheets as sacrificial templates, we have successfully synthesized PdPtBi networked nanowires (NWs) to improve the activity and stability for ethanol oxidation reaction (EOR) due to the addition of Bi. Density functional theory (DFT) calculations demonstrated the downshift of d-band center of Pd, which is beneficial to suppress CO poisoning and boost reaction kinetics for EOR. Impressively, the PdPtBi networked NWs exhibited the highest activity (11.08 A·mgPd+Pt−1 and 92.52 mA·cm−2) with an enhancement of 4.4 and 17.5 times relative to those of Pd/C, respectively and best stability with a 47.2% left versus only a 5.8% left for Pd/C of mass activity after 3,600 s towards EOR. This work deepens the understanding of controllable preparation of networked NWs and provides an effective strategy to design advanced catalysts with high activity and stability.

Keywords: palladium, ethanol oxidation, platinum, nanowire, trimetallic, network

References(43)

[1]

Fadzillah, D. M.; Kamarudin, S. K.; Zainoodin, M. A.; Masdar, M. S. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. Int. J. Hydrogen Energy 2019, 44, 3031–3054.

[2]

Lyu, F. L.; Cao, M. H.; Mahsud, A.; Zhang, Q. Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. J. Mater. Chem. A 2020, 8, 15445–15457.

[3]

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

[4]

Wang, H. J.; Zheng, H. L.; Ling, L.; Fang, Q.; Jiao, L.; Zheng, L. R.; Qin, Y.; Luo, Z.; Gu, W. L.; Song, W. Y. et al. Pd metallene aerogels with single-atom W doping for selective ethanol oxidation. ACS Nano 2022, 16, 21266–21274.

[5]

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

[6]

Han, S. H.; Liu, H. M.; Chen, P.; Jiang, J. X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326.

[7]

Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

[8]

Tian, H.; Zhu, R. X.; Deng, P. L.; Li, J.; Huang, W.; Chen, Q.; Su, Y. Q.; Jia, C. M.; Liu, Z. X.; Shen, Y. J. et al. Ultrathin Pd3Pt1Rh0.1 nanorings with strong C−C bond breaking ability for the ethanol oxidation reaction. Small 2022, 18, 2203506.

[9]

Dai, L. X.; Wang, X. Y.; Yang, S. S.; Zhang, T.; Ren, P. J.; Ye, J. Y.; Nan, B.; Wen, X. D.; Zhou, Z. Y.; Si, R. et al. Intrinsic composition and electronic effects of multicomponent platinum nanocatalysts with high activity and selectivity for ethanol oxidation reaction. J. Mater. Chem. A 2018, 6, 11270–11280.

[10]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Liu, H.; Chen, D.; Han, Y. S.; Xu, L.; Yang, J. Core-shell CuPd@NiPd nanoparticles: Coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS Catal. 2022, 12, 9092–9100.

[11]

Zhang, Y.; Liu, X. Z.; Liu, T. Y.; Ma, X. Y.; Feng, Y. G.; Xu, B. Y.; Cai, W. B.; Li, Y. F.; Su, D.; Shao, Q. et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: An efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, 2202333.

[12]

Ye, N.; Zhao, P. C.; Qi, X. Y.; Sheng, W. C.; Jiang, Z.; Fang, T. Ethanol electro-oxidation on the PdSn-TaN/C catalyst in alkaline media: Making TaN capable of splitting C−C bond. Appl. Catal. B Environ. 2022, 314, 121473.

[13]

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

[14]

Li, X.; Yao, K. X.; Zhao, F. L.; Yang, X. T.; Li, J. W.; Li, Y. F.; Yuan, Q. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 2022, 15, 6036–6044.

[15]

Han, S. M.; Ma, Y.; Yun, Q. B.; Wang, A. L.; Zhu, Q. S.; Zhang, H.; He, C. H.; Xia, J.; Meng, X. M.; Gao, L. et al. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation. Adv. Funct. Mater. 2022, 32, 2208760.

[16]

Lv, H.; Sun, L. Z.; Wang, Y. Z.; Liu, S. H.; Liu, B. Highly curved, quasi-single-crystalline mesoporous metal nanoplates promote C−C bond cleavage in ethanol oxidation electrocatalysis. Adv. Mater. 2022, 34, 2203612.

[17]

Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A. L.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970–1975.

[18]

Xiao, F.; Qin, X. P.; Xu, M. J.; Zhu, S. Q.; Zhang, L. L.; Hong, Y.; Choi, S. I.; Chang, Q. W.; Xu, Y.; Pan, X. Q. et al. Impact of heat treatment on the electrochemical properties of carbon-supported octahedral Pt-Ni nanoparticles. ACS Catal. 2019, 9, 11189–11198.

[19]

Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F.; Pan, X. Q.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019, 19, 5431–5436.

[20]

Wang, W.; Zhang, X.; Zhang, Y. H.; Chen, X. W.; Ye, J. Y.; Chen, J. Y.; Lyu, Z. X.; Chen, X. J.; Kuang, Q.; Xie, S. F. et al. Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 2020, 20, 5458–5464.

[21]

Pu, H. K.; Zhang, T.; Dong, K. Y.; Dai, H. Z.; Zhou, L. M.; Wang, K. K.; Bai, S. X.; Wang, Y. Y.; Deng, Y. J. Evolution of PtCu tripod nanocrystals to dendritic triangular nanocrystals and study of the electrochemical performance to alcohol electrooxidation. Nanoscale 2021, 13, 20592–20600.

[22]

Zhang, J. X.; Yuan, M. L.; Zhao, T. K.; Wang, W. B.; Huang, H. Y.; Cui, K. R.; Liu, Z. J.; Li, S. W.; Li, Z. H.; Zhang, G. J. Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. J. Mater. Chem. A 2021, 9, 20676–20684.

[23]

Wang, H. J.; Jiao, L.; Zheng, L. R.; Fang, Q.; Qin, Y.; Luo, X.; Wei, X. Q.; Hu, L. Y.; Gu, W. L.; Wen, J. et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv. Funct. Mater. 2021, 31, 2103465.

[24]

Luo, X. L.; Liu, C.; Wang, X. L.; Shao, Q.; Pi, Y. C.; Zhu, T.; Li, Y. Y.; Huang, X. Q. Spin regulation on 2D Pd-Fe-Pt nanomeshes promotes fuel electrooxidations. Nano Lett. 2020, 20, 1967–1973.

[25]

Wang, Z.; Huang, L.; Tian, Z. Q.; Shen, P. K. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. J. Mater. Chem. A 2019, 7, 18619–18625.

[26]

Lv, H.; Wang, Y.; Lopes, A.; Xu, D. D.; Liu, B. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis. Appl. Catal. B Environ. 2019, 249, 116–125.

[27]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

[28]

Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

[29]

Lv, H.; Sun, L. Z.; Xu, D. D.; Liu, B. Ternary metal-metalloid-nonmetal alloy nanowires: A novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Sci. Bull. 2020, 65, 1823–1831.

[30]

You, H. M.; Gao, F.; Wang, C.; Li, J.; Zhang, K. W.; Zhang, Y. P.; Du, Y. K. Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939–17944.

[31]

Yang, G. X.; Wang, Y. F.; Xu, L. B.; Li, Y.; Li, L. H.; Sun, Y. M.; Yuan, Z. H.; Tang, Y. W. Pd nanochains: Controlled synthesis by lysine and application in microbial fuel cells. Chem. Eng. J. 2020, 379, 122230.

[32]

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

[33]

Wu, X. Q.; Li, X.; Yan, Y. C.; Luo, S.; Huang, J. B.; Li, J. J.; Yang, D. R.; Zhang, H. Facile synthesis of Pd@PtM (M = Rh, Ni, Pd, Cu) multimetallic nanorings as efficient catalysts for ethanol oxidation reaction. Front. Chem. 2021, 9, 683450.

[34]

Du, W. X.; Su, D.; Wang, Q.; Frenkel, A. I.; Teng, X. W. Promotional effects of bismuth on the formation of platinum-bismuth nanowires network and the electrocatalytic activity toward ethanol oxidation. Cryst. Growth Des. 2011, 11, 594–599.

[35]

Chu, M. Y.; Huang, J. L.; Gong, J.; Qu, Y.; Chen, G. L.; Yang, H.; Wang, X. C.; Zhong, Q. X.; Deng, C. W.; Cao, M. H. et al. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 2022, 15, 3920–3926.

[36]

Zhang, S.; Zeng, Z. C.; Li, Q. Q.; Huang, B. L.; Zhang, X. Y.; Du, Y. P.; Yan, C. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy Environ. Sci. 2021, 14, 5911–5918.

[37]

Nia, N. S.; Guillén-Villafuerte, O.; Griesser, C.; Manning, G.; Kunze-Liebhäuser, J.; Arévalo, C.; Pastor, E.; García, G. W2C-supported PtAuSn—A catalyst with the earliest ethanol oxidation onset potential and the highest ethanol conversion efficiency to CO2 known till date. ACS Catal. 2020, 10, 1113–1122.

[38]

Zhou, M.; Liu, J. W.; Ling, C. Y.; Ge, Y. Y.; Chen, B.; Tan, C. L.; Fan, Z. X.; Huang, J. T.; Chen, J. Z.; Liu, Z. Q. et al. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater. 2022, 34, 2106115.

[39]

Wang, L.; Wu, W.; Lei, Z.; Zeng, T.; Tan, Y. Y.; Cheng, N. C.; Sun, X. L. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles. J. Mater. Chem. A 2020, 8, 592–598.

[40]

Wang, P.; Cui, H.; Wang, C. X. In situ formation of porous trimetallic PtRhFe nanospheres decorated on ultrathin MXene nanosheets as highly efficient catalysts for ethanol oxidation. Nano Energy 2019, 66, 104196.

[41]

Chang, Q. W.; Kattel, S.; Li, X.; Liang, Z. X.; Tackett, B. M.; Denny, S. R.; Zhang, P.; Su, D.; Chen, J. G.; Chen, Z. Enhancing C−C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 2019, 9, 7618–7625.

[42]

Yuan, X. L.; Zhang, Y.; Cao, M. H.; Zhou, T.; Jiang, X. J.; Chen, J. X.; Lyu, F. L.; Xu, Y.; Luo, J.; Zhang, Q. et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019, 19, 4752–4759.

[43]

Jana, R.; Datta, A.; Malik, S. Tuning intermediate adsorption in structurally ordered substituted PdCu3 intermetallic nanoparticles for enhanced ethanol oxidation reaction. Chem. Commun. 2021, 57, 4508–4511.

File
12274_2023_5746_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2023
Revised: 10 April 2023
Accepted: 17 April 2023
Published: 15 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by National Program for Support of Top-notch Young Professionals, National Key R&D Program of China (No. 2018YFB2200102), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61721005), and the Fundamental Research Funds for the Central Universities (Nos. 226-2022-00200 and 226-2022-00250).

Return