Journal Home > Volume 16 , Issue 7

Patients with ulcerative colitis (UC) often loss responses over long term usage of conventional therapies. Tofacitinib, a pan-Janus kinases (JAK) inhibitor is approved for moderate to severe UC treatment, while dose-limiting systemic side effects including infections, cancers and lymphoma limit its popularity of clinical application. This study sought to construct an anti-mucosal vascular addressin cell-adhesion molecule-1 (anti-MAdCAM-1) antibody modified reactive oxygen species (ROS) responsive human serum albumin-based nanomedicine denoted as THM, to improve the therapeutic efficacy of tofacitinib for UC treatment. THM has the drug releasing properties in response to ROS stimulation. In vitro studies show that THM selectively adhered to the endothelial cells and had obvious anti-inflammatory effect on macrophages. Meanwhile, the nanomedicine can inhibit the phenotypic switching of M1 macrophages and promote M2 polarization to produce anti-inflammatory medicators during wound healing. In addition, in vivo fluorescence imaging verified that THM exhibited enhanced preferential accumulation and extended retention in inflamed colon. Moreover, THM significantly reduced the production of proinflammatory cytokines in the colon and suppressed the homing of T cells to the gut in dextran sodium sulfate induced experimental colitis. This work elucidates that the inflamed colon-targeted delivery of tofacitinib by nanomedicine is promising for UC treatment and sheds light on addressing the unmet medical need.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inflammation responsive tofacitinib loaded albumin nanomedicine for targeted synergistic therapy in ulcerative colitis

Show Author's information Bang Li1,§Xiaoyan Liu1,§Qi Long2,§Xiaoduan Zhuang1Yanfei Gao1Barkat Ali2Haoting Chen2Dongyang Zhang2( )Xinying Wang1( )Weisheng Guo2( )
Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China

§ Bang Li, Xiaoyan Liu, and Qi Long contributed equally to this work.

Abstract

Patients with ulcerative colitis (UC) often loss responses over long term usage of conventional therapies. Tofacitinib, a pan-Janus kinases (JAK) inhibitor is approved for moderate to severe UC treatment, while dose-limiting systemic side effects including infections, cancers and lymphoma limit its popularity of clinical application. This study sought to construct an anti-mucosal vascular addressin cell-adhesion molecule-1 (anti-MAdCAM-1) antibody modified reactive oxygen species (ROS) responsive human serum albumin-based nanomedicine denoted as THM, to improve the therapeutic efficacy of tofacitinib for UC treatment. THM has the drug releasing properties in response to ROS stimulation. In vitro studies show that THM selectively adhered to the endothelial cells and had obvious anti-inflammatory effect on macrophages. Meanwhile, the nanomedicine can inhibit the phenotypic switching of M1 macrophages and promote M2 polarization to produce anti-inflammatory medicators during wound healing. In addition, in vivo fluorescence imaging verified that THM exhibited enhanced preferential accumulation and extended retention in inflamed colon. Moreover, THM significantly reduced the production of proinflammatory cytokines in the colon and suppressed the homing of T cells to the gut in dextran sodium sulfate induced experimental colitis. This work elucidates that the inflamed colon-targeted delivery of tofacitinib by nanomedicine is promising for UC treatment and sheds light on addressing the unmet medical need.

Keywords: ulcerative colitis, targeted delivery, tofacitinib, mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1), reactive oxygen species (ROS)-responsive

References(39)

[1]

Graham, D. B.; Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020, 578, 527–539.

[2]

Pantavou, K.; Yiallourou, A. I.; Piovani, D.; Evripidou, D.; Danese, S.; Peyrin-Biroulet, L.; Bonovas, S.; Nikolopoulos, G. K. Efficacy and safety of biologic agents and tofacitinib in moderate-to-severe ulcerative colitis: A systematic overview of meta-analyses. United European Gastroenterol. J. 2019, 7, 1285–1303.

[3]

Singh, S.; Allegretti, J. R.; Siddique, S. M.; Terdiman, J. P. AGA technical review on the management of moderate to severe ulcerative colitis. Gastroenterology 2020, 158, 1465–1496.e17.

[4]

Dulai, P. S.; Singh, S.; Casteele, N. V.; Meserve, J.; Winters, A.; Chablaney, S.; Aniwan, S.; Shashi, P.; Kochhar, G.; Weiss, A. et al. Development and validation of clinical scoring tool to predict outcomes of treatment with vedolizumab in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 2020, 18, 2952–2961.e8.

[5]

Sandborn, W. J.; Su, C.; Panes, J. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2017, 377, 496–497.

[6]

Zhang, Y. Z.; Li, Y. Y. Inflammatory bowel disease: pathogenesis. World J. Gastroenterol. 2014, 20, 91-99.

[7]

Coskun, M.; Salem, M.; Pedersen, J.; Nielsen, O. H. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol. Res. 2013, 76, 1–8.

[8]

Soendergaard, C.; Bergenheim, F. H.; Bjerrum, J. T.; Nielsen, O. H. Targeting JAK-STAT signal transduction in IBD. Pharmacol. Ther. 2018, 192, 100–111.

[9]

Salas, A.; Hernandez-Rocha, C.; Duijvestein, M.; Faubion, W.; McGovern, D.; Vermeire, S.; Vetrano, S.; Casteele, N. V. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 323–337.

[10]

Fernández-Clotet, A.; Castro-Poceiro, J.; Panés, J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev. Clin. Immunol. 2018, 14, 881–892.

[11]

Yang, M.; Zhang, Y. J.; Ma, Y. N.; Yan, X. J.; Gong, L. Y.; Zhang, M. Z.; Zhang, B. J. Nanoparticle-based therapeutics of inflammatory bowel diseases: A narrative review of the current state and prospects. J. Bio-X Res. 2020, 3, 157–173.

[12]

Nunes, R.; Neves, J. D.; Sarmento, B. Nanoparticles for the regulation of intestinal inflammation: Opportunities and challenges. Nanomedicine 2019, 14, 2631–2644.

[13]

Pertuit, D.; Moulari, B.; Betz, T.; Nadaradjane, A.; Neumann, D.; Ismaïli, L.; Refouvelet, B.; Pellequer, Y.; Lamprecht, A. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J. Control. Release 2007, 123, 211–218.

[14]

Makhlof, A.; Tozuka, Y.; Takeuchi, H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur. J. Pharm. Biopharm. 2009, 72, 1–8.

[15]

Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M. A.; Zhang, Y. C.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013, 34, 7471–7482.

[16]

Zhang, J. X.; Zhao, Y. G.; Hou, T. L.; Zeng, H. R.; Kalambhe, D.; Wang, B.; Shen, X. Y.; Huang, Y. Z. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J. Control. Release 2020, 320, 363–380.

[17]

Zhang, S. F.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017, 16, 82–96.

[18]

Gao, Y. F.; Xu, A. G.; Shen, Q.; Xie, Y.; Liu, S. L.; Wang, X. Y. Graphene oxide aggravated dextran sulfate sodium-induced colitis through intestinal epithelial cells autophagy dysfunction. J. Toxicol. Sci. 2021, 46, 43–55.

[19]

Zhang, D. Y.; Zheng, Y.; Zhang, H.; Sun, J. H.; Tan, C. P.; He, L.; Zhang, W.; Ji, L. N.; Mao, Z. W. Delivery of phosphorescent anticancer iridium(III) complexes by polydopamine nanoparticles for targeted combined photothermal-chemotherapy and thermal/photoacoustic/lifetime imaging. Adv. Sci. 2018, 5, 1800581.

[20]

Liu, L.; Hu, F. L.; Wang, H.; Wu, X. L.; Eltahan, A. S.; Stanford, S.; Bottini, N.; Xiao, H. H.; Bottini, M.; Guo, W. S. et al. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano 2019, 13, 5036–5048.

[21]

Verstockt, B.; Vetrano, S.; Salas, A.; Nayeri, S.; Duijvestein, M.; Casteele, N. V. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 351–366.

[22]

Briskin, M.; Winsor-Hines, D.; Shyjan, A.; Cochran, N.; Bloom, S.; Wilson, J.; McEvoy, L. M.; Butcher, E. C.; Kassam, N.; Mackay, C. R. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 1997, 151, 97–110.

[23]

Arihiro, S.; Ohtani, H.; Suzuki, M.; Murata, M.; Ejima, C.; Oki, M.; Kinouchi, Y.; Fukushima, K.; Sasaki, I.; Nakamura, S.; Matsumoto, T.; Torii, A.; Toda, G.; Nagura, H. Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn's disease. Pathol. Int. 2002, 52, 367–374.

[24]

Wu, Y. W.; Briley, K.; Tao, X. F. Nanoparticle-based imaging of inflammatory bowel disease. WIREs Nanomed. Nanobiotechnol. 2016, 8, 300–315.

[25]

Nakase, H.; Sato, N.; Mizuno, N.; Ikawa, Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev. 2022, 21, 103017.

[26]

Su, X. D.; Yu, Y. P.; Zhong, Y.; Giannopoulou, E. G.; Hu, X. Y.; Liu, H.; Cross, J. R.; Rätsch, G.; Rice, C. M.; Ivashkiv, L. B. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat. Immunol. 2015, 16, 838–849.

[27]
Zhen, Y.; Zhang, H. NLRP3 inflammasome and inflammatory bowel disease. Front. Immunol. 2019, 10, 276.
DOI
[28]

Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342.

[29]

Sun, Y.; Sun, X. L.; Li, X.; Li, W.; Li, C. Y.; Zhou, Y. M.; Wang, L.; Dong, B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2021, 268, 120614.

[30]

Bai, J. X.; Wang, H. Y.; Chen, H.; Ge, G. R.; Wang, M.; Gao, A.; Tong, L. P.; Xu, Y. Z.; Yang, H. L.; Pan, G. Q. et al. Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation. Biomaterials 2020, 255, 120197.

[31]

He, W.; Kapate, N.; Shields IV, C. W.; Mitragotri, S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv. Drug Delivery Rev. 2020, 165–166, 15–40.

[32]

Perdiguero, E. G.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; De Bruijn, M. F.; Geissmann, F. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518, 547–551.

[33]

Watanabe, C.; Miura, S.; Hokari, R.; Teramoto, K.; Ogino, T.; Komoto, S.; Hara, Y.; Koseki, S.; Tsuzuki, Y.; Nagata, H. et al. Spatial heterogeneity of TNF-α-induced T cell migration to colonic mucosa is mediated by MAdCAM-1 and VCAM-1. Am. J. Physiol. -Gastrointest. Liver Physiol. 2002, 283, G1379–1387.

[34]

De Chaisemartin, L.; Goc, J.; Damotte, D.; Validire, P.; Magdeleinat, P.; Alifano, M.; Cremer, I.; Fridman, W. H.; Sautès-Fridman, C.; Dieu-Nosjean, M. C. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. 2011, 71, 6391–6399.

[35]

Hoffmann, M.; Schwertassek, U.; Seydel, A.; Weber, K.; Falk, W.; Hauschildt, S.; Lehmann, J. A refined and translationally relevant model of chronic DSS colitis in BALB/c mice. Lab. Anim. 2018, 52, 240–252.

[36]

Miles, A.; Liaskou, E.; Eksteen, B.; Lalor, P. F.; Adams, D. H. CCL25 and CCL28 promote α4β7-integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. Am. J. Physiol. -Gastrointest. Liver Physiol. 2008, 294, G1257–G1267.

[37]

Luettig, J.; Rosenthal, R.; Lee, I. F. M.; Krug, S. M.; Schulzke, J. D. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Mol. Nutr. Food Res. 2016, 60, 2576–2586.

[38]

Berlin, C.; Berg, E. L.; Briskin, M. J.; Andrew, D. P.; Kilshaw, P. J.; Holzmann, B.; Weissman, I. L.; Hamann, A.; Butcher, E. C. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993, 74, 185–195.

[39]

Gerlach, K.; Lechner, K.; Popp, V.; Offensperger, L.; Zundler, S.; Wiendl, M.; Becker, E.; Atreya, R.; Rath, T.; Neurath, M. F. et al. The JAK1/3 inhibitor to tofacitinib suppresses T cell homing and activation in chronic intestinal inflammation. J. Crohn's Colitis 2021, 15, 244–257.

File
12274_2023_5743_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 February 2023
Revised: 12 April 2023
Accepted: 14 April 2023
Published: 02 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was partially supported by grants from the National Natural Science Foundation of China (Nos. 31971302 and 82170532), the Natural Science Foundation of Guangdong Province of China (No. 2019A1515011597), the talent young scientist supporting program of China Association for Science and Technology, the Educational Commission of Guangdong Province of China key Project (No. 2020ZDZX2001), the joint grant between Guangzhou City and College (No. 202102010106), and Guangzhou Science and Technology Plan Project (No. 202201011509).

Return