Journal Home > Volume 16 , Issue 7

Tumor hypoxia is intimately associated with gliomas, which represents a significant threat to human health and are resistant to the first-line chemotherapeutic drug temozolomide (TMZ) due to hypoxia. In this work, to overcome TMZ resistance in orthotopic gliomas, aptamer-functionalized liposomes are manufactured to encapsulate TMZ and photothermal agent IR780, and can cross the blood-brain barrier and actively target gliomas. It is possible to employ liposomes for both fluorescence and photoacoustic imaging simultaneously due to their stability and excellent photothermal conversion capabilities. This chemo/photothermal synergistic therapeutic effect of liposomes on gliomas is demonstrated by their abilities to target orthotopic gliomas, alleviate tumor hypoxia and consequently reverse resistance of glioma cells to TMZ, thereby extending the survival time of tumor-bearing mice, making the nanoplatforms and their synergistic chemo/photothermal therapy as a potential clinical treatment for gliomas.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia

Show Author's information Yun Zeng1,3Linfei Zhao1,3Ke Li4Jingwen Ma5Dan Chen1,3Changhu Liu2Wenhua Zhan2( )Yonghua Zhan1,3( )
School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an 710126, China
Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an 710126, China
Xi’an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an 710021, China
Radiology Department, CT and MRI Room, Ninth Hospital of Xi’an, Xi’an 710054, China

Abstract

Tumor hypoxia is intimately associated with gliomas, which represents a significant threat to human health and are resistant to the first-line chemotherapeutic drug temozolomide (TMZ) due to hypoxia. In this work, to overcome TMZ resistance in orthotopic gliomas, aptamer-functionalized liposomes are manufactured to encapsulate TMZ and photothermal agent IR780, and can cross the blood-brain barrier and actively target gliomas. It is possible to employ liposomes for both fluorescence and photoacoustic imaging simultaneously due to their stability and excellent photothermal conversion capabilities. This chemo/photothermal synergistic therapeutic effect of liposomes on gliomas is demonstrated by their abilities to target orthotopic gliomas, alleviate tumor hypoxia and consequently reverse resistance of glioma cells to TMZ, thereby extending the survival time of tumor-bearing mice, making the nanoplatforms and their synergistic chemo/photothermal therapy as a potential clinical treatment for gliomas.

Keywords: liposomes, blood-brain barrier, photothermal therapy, aptamers, gliomas

References(49)

[1]

Molinaro, A. M.; Taylor, J. W.; Wiencke, J. K.; Wrensch, M. R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 2019, 15, 405–417.

[2]

Ostrom, Q. T.; Cote, D. J.; Ascha, M.; Kruchko, C.; Barnholtz-Sloan, J. S. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018, 4, 1254–1262.

[3]

Messaoudi, K.; Clavreul, A.; Lagarce, F. Toward an effective strategy in glioblastoma treatment. Part I:Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov. Today 2015, 20, 899–905.

[4]

Petrenko, D.; Chubarev, V.; Syzrantsev, N.; Ismail, N.; Merkulov, V.; Sologova, S.; Grigorevskikh, E.; Smolyarchuk, E.; Alyautdin, R. Temozolomide efficacy and metabolism: The implicit relevance of nanoscale delivery systems. Molecules 2022, 27, 3507.

[5]

Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma-a comprehensive review. Cancer Drug Resist. 2021, 4, 17–43.

[6]

Wick, W.; Weller, M.; van den Bent, M.; Sanson, M.; Weiler, M.; von Deimling, A.; Plass, C.; Hegi, M.; Platten, M.; Reifenberger, G. MGMT testing-the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 2014, 10, 372–385.

[7]
Yu, W.; Zhang, L. L.; Wei, Q. C.; Shao, A. W. O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front. Oncol. 2020, 9, 1547.
[8]

Quartuccio, N.; Laudicella, R.; Mapelli, P.; Guglielmo, P.; Pizzuto, D. A.; Boero, M.; Arnone, G.; Picchio, M. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin. Transl. Imaging 2020, 8, 11–20.

[9]

Lin, W. Z.; Wu, S. H.; Chen, X. C.; Ye, Y. L.; Weng, Y. L.; Pan, Y. H.; Chen, Z. J.; Chen, L.; Qiu, X. X.; Qiu, S. F. Characterization of hypoxia signature to evaluate the tumor immune microenvironment and predict prognosis in glioma groups. Front. Oncol. 2020, 10, 796.

[10]

Baguley, B. C. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010, 46, 308–316.

[11]

Musah-Eroje, A.; Watson, S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J. Neuro-Oncol. 2019, 142, 231–240.

[12]

Hsieh, C. H.; Lin, Y. J.; Wu, C. P.; Lee, H. T.; Shyu, W. C.; Wang, C. C. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin. Cancer Res. 2015, 21, 460–470.

[13]

Tang, J. H.; Ma, Z. X.; Huang, G. H.; Xu, Q. F.; Xiang, Y.; Li, N. N.; Sidlauskas, K.; Zhang, E. E.; Lv, S. Q. Downregulation of HIF-1α sensitizes U251 glioma cells to the temozolomide (TMZ) treatment. Exp. Cell Res. 2016, 343, 148–158.

[14]

Ge, X.; Pan, M. H.; Wang, L.; Li, W.; Jiang, C. F.; He, J.; Abouzid, K.; Liu, L. Z.; Shi, Z. M.; Jiang, B. H. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018, 9, 1128.

[15]

Bastola, S.; Pavlyukov, M. S.; Yamashita, D.; Ghosh, S.; Cho, H.; Kagaya, N.; Zhang, Z.; Minata, M.; Lee, Y.; Sadahiro, H. et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat. Commun. 2020, 11, 4660.

[16]

Wang, H.; Xue, K. F.; Yang, Y. C.; Hu, H.; Xu, J. F.; Zhang, X. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. J. Am. Chem. Soc. 2022, 144, 2360–2367.

[17]

Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

[18]

Wang, X. W.; Wang, X. Y.; Yue, Q. F.; Xu, H. Z.; Zhong, X. Y.; Sun, L. N.; Li, G. Q.; Gong, Y. H.; Yang, N. L.; Wang, Z. H. et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today 2021, 39, 101170.

[19]

Zhang, C.; Xia, D. L.; Liu, J. H.; Huo, D.; Jiang, X. Q.; Hu, Y. Bypassing the immunosuppression of myeloid-derived suppressor cells by reversing tumor hypoxia using a platelet-inspired platform. Adv. Funct. Mater. 2020, 30, 2000189.

[20]

Fang, C.; Wang, K.; Stephen, Z. R.; Mu, Q. X.; Kievit, F. M.; Chiu, D. T.; Press, O. W.; Zhang, M. Q. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl. Mater. Interfaces 2015, 7, 6674–6682.

[21]

Amarandi, R. M.; Ibanescu, A.; Carasevici, E.; Marin, L.; Dragoi, B. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue. Pharmaceutics 2022, 14, 308.

[22]

Zhu, X. F.; Zhou, H.; Liu, Y. N.; Wen, Y. Y.; Wei, C. F.; Yu, Q. Q.; Liu, J. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 2018, 82, 143–157.

[23]

Zhao, J.; Liu, P. D.; Ma, J.; Li, D. D.; Yang, H. Q.; Chen, W. B.; Jiang, Y. W. Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer As1411 for glioma irradiation therapy. Int. J. Nanomedicine 2019, 14, 9483–9496.

[24]

Ferraris, C.; Cavalli, R.; Panciani, P. P.; Battaglia, L. Overcoming the blood-brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int. J. Nanomedicine 2020, 15, 2999–3022.

[25]

Yasaswi, P. S.; Shetty, K.; Yadav, K. S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release 2021, 336, 549–571.

[26]

Fu, W.; You, C.; Ma, L.; Li, H.; Ju, Y.; Guo, X.; Shi, S. R.; Zhang, T.; Zhou, R. H.; Lin, Y. F. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl. Mater. Interfaces 2019, 11, 39525–39533.

[27]

Mojarad-Jabali, S.; Farshbaf, M.; Walker, P. R.; Hemmati, S.; Fatahi, Y.; Zakeri-Milani, P.; Sarfraz, M.; Valizadeh, H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int. J. Pharm. 2021, 602, 120645.

[28]

Zhang, J. C.; Xiao, X.; Zhu, J. M.; Gao, Z. Y.; Lai, X. L.; Zhu, X. G.; Mao, G. H. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int. J. Nanomedicine 2018, 13, 3039–3051.

[29]

Ismail, M.; Yang, W.; Li, Y. F.; Chai, T. R.; Zhang, D. Y.; Du, Q. L.; Muhammad, P.; Hanif, S.; Zheng, M.; Shi, B. Y. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022, 287, 121608.

[30]

Arcella, A.; Palchetti, S.; Digiacomo, L.; Pozzi, D.; Capriotti, A. L.; Frati, L.; Oliva, M. A.; Tsaouli, G.; Rota, R.; Screpanti, I. et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem. Neurosci. 2018, 9, 3166–3174.

[31]

Yazdian-Robati, R.; Bayat, P.; Oroojalian, F.; Zargari, M.; Ramezani, M.; Taghdisi, S. M.; Abnous, K. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol. 2020, 155, 1420–1431.

[32]

Moosavian, S. A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett. 2019, 448, 144–154.

[33]

Liao, Z. X.; Chuang, E. Y.; Lin, C. C.; Ho, Y. C.; Lin, K. J.; Cheng, P. Y.; Chen, K. J.; Wei, H. J.; Sung, H. W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release 2015, 208, 42–51.

[34]

Li, L. Y.; Hou, J. J.; Liu, X. J.; Guo, Y. J.; Wu, Y.; Zhang, L. H.; Yang, Z. J. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850.

[35]

Wang, H.; Zhu, Z. H.; Zhang, G. L.; Lin, F. X.; Liu, Y.; Zhang, Y.; Feng, J.; Chen, W. H.; Meng, Q.; Chen, L. K. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J. Pharm. Sci. 2019, 108, 3684–3694.

[36]

Li, M. H.; Teh, C.; Ang, C. Y.; Tan, S. Y.; Luo, Z.; Qu, Q. Y.; Zhang, Y. Y.; Korzh, V.; Zhao, Y. L. Near-infrared light-absorptive stealth liposomes for localized photothermal ablation of tumors combined with chemotherapy. Adv. Funct. Mater. 2015, 25, 5602–5610.

[37]

Guha, S.; Shaw, S. K.; Spence, G. T.; Roland, F. M.; Smith, B. D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir 2015, 31, 7826–7834.

[38]

Yin, N.; Wang, Y. H.; Huang, Y.; Cao, Y.; Jin, L. H.; Liu, J. H.; Zhang, T. Q.; Song, S. Y.; Liu, X. G.; Zhang, H. J. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv. Sci. 2023, 10, 2204937.

[39]

Yu, Y. W.; Wang, A. P.; Wang, S. Q.; Sun, Y. C.; Chu, L. X.; Zhou, L.; Yang, X. Y.; Liu, X. C.; Sha, C. J.; Sun, K. X. et al. Efficacy of temozolomide-conjugated gold nanoparticle photothermal therapy of drug-resistant glioblastoma and its mechanism study. Mol. Pharmaceut. 2022, 19, 1219–1229.

[40]

Porciani, D.; Signore, G.; Marchetti, L.; Mereghetti, P.; Nifosì, R.; Beltram, F. Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. Mol. Ther. Nucleic Acids 2014, 3, e144.

[41]

Nordling-David, M. M.; Yaffe, R.; Guez, D.; Meirow, H.; Last, D.; Grad, E.; Salomon, S.; Sharabi, S.; Levi-Kalisman, Y.; Golomb, G. et al. Liposomal temozolomide drug delivery using convection enhanced delivery. J. Control. Release 2017, 261, 138–146.

[42]

Fan, K. L.; Jia, X. H.; Zhou, M.; Wang, K.; Conde, J.; He, J. Y.; Tian, J.; Yan, X. Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 2018, 12, 4105–4115.

[43]

Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 2012, 134, 5516–5519.

[44]

Luo, S. Y.; Wang, Y.; Shen, S. H.; Tang, P.; Liu, Z. Y.; Zhang, S.; Wu, D. C. IR780-loaded hyaluronic acid@gossypol-Fe(III)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv. Funct. Mater. 2021, 31, 2100954.

[45]

Kanzawa, T.; Germano, I. M.; Kondo, Y.; Ito, H.; Kyo, S.; Kondo, S. Inhibition of telomerase activity in malignant glioma cells correlates with their sensitivity to temozolomide. Br. J. Cancer 2003, 89, 922–929.

[46]

Chakravarti, A.; Erkkinen, M. G.; Nestler, U.; Stupp, R.; Mehta, M.; Aldape, K.; Gilbert, M. R.; Black, P. M.; Loeffler, J. S. Temozolomide-mediated radiation enhancement in glioblastoma: A report on underlying mechanisms. Clin. Cancer Res. 2006, 12, 4738–4746.

[47]

Zuo, H. Q.; Tao, J. X.; Shi, H.; He, J.; Zhou, Z. Y.; Zhang, C. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 2018, 80, 296–307.

[48]

Zou, Y.; Wang, Y. B.; Xu, S.; Liu, Y. J.; Yin, J. L.; Lovejoy, D. B.; Zheng, M.; Liang, X. J.; Park, J. B.; Efremov, Y. M. et al. Brain co-delivery of temozolomide and cisplatin for combinatorial glioblastoma chemotherapy. Adv. Mater. 2022, 34, 2203958.

[49]
Hu, D. H.; Sheng, Z. H.; Zhu, M. T.; Wang, X. B.; Yan, F.; Liu, C. B.; Song, L.; Qian, M.; Liu, X.; Zheng, H. R. Förster resonance energy transfer-based dual-modal theranostic nanoprobe for in situ visualization of cancer photothermal therapy. Theranostics 2018, 8, 410–422.
File
12274_2023_5742_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2023
Revised: 11 April 2023
Accepted: 14 April 2023
Published: 22 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported, in part, by the National Natural Science Foundation of China (Nos. 32171173, 32001074, and 82260473), the Key Research and Development Program in Ningxia Province of China (No. 2022BEG03080), the Natural Science Basic Research Plan in Ningxia Province of China (No. 2022AAC03522), the Health Commission of Ningxia Hui Autonomous Region Science and Technology Support Project for Quality Development of Medical Institutions (No. 2023-NWKYT-019), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (No. SMFA20A02), the Natural Science Basic Research Key Program of Shaanxi Province (No. 2023-JC-ZD-53), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2022JQ-201), the Fundamental Research Funds for the Central Universities (Nos. ZYTS23190 and xzy012022134), and the Beijing Xisike Clinical Oncology Research Foundation.

Return