Journal Home > Volume 16 , Issue 7

Single-atom nanozymes (SAzymes) are emerging as promising alternatives to mimic natural enzyme, which is due to high atomic utilization efficiency, well-defined geometric, and unique electronic structure. Herein, Fe single atoms supported on Ti3C2Tx (Fe-SA/Ti3C2Tx) with intrinsic peroxidase activity is developed, further constructing a sensitive Raman sensor array for sensing of five antioxidants. Fe-SA/Ti3C2Tx shows excellent peroxidase-like performance in catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with colorimetric reactions. X-ray adsorption fine structure (XAFS) reveals that the electron transport between the Ti3C2Tx and Fe atoms occurs along Fe-O-Ti ligands, meanwhile the density functional theory (DFT) calculations confirm the spontaneous dissociation of H2O2 and the formation of OH radicals. Furthermore, the peroxidase-like Fe-SA/Ti3C2Tx was used as surface enhanced Raman scattering (SERS) substrate of oxidized TMB (TMB+) and achieved satisfied signal amplification performance. Using the blocking effects of free radical reactions, one-off identification of 5 antioxidants, including ascorbic acid (AA), uric acid (UA), glutathione (GSH), melatonin (Mel), and tea polyphenols (TPP), could be realized with this high identifiable catalytic property. This principle could realize 100% distinguish accuracy combined with linear discriminant analysis (LDA) and heat map data analysis. A wide detection concentration ranges from 10−8 to 10−3 M for five antioxidants was also achieved.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Peroxidase-like single Fe atoms anchored on Ti3C2Tx MXene as surface enhanced Raman scattering substrate for the simultaneous discrimination of multiple antioxidants

Show Author's information Hongyan Xi1,§Hongfei Gu2,§Yurui Han3,§Tingting You1Pengfei Wu1Qingqing Liu1Lirong Zheng4Shuhu Liu4Qiang Fu5Wenxing Chen2Yukun Gao1Yuting Wang1( )Penggang Yin1( )
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Institute of High Energy Physics, Chinese Academy of Science, Beijing 100029, China
School of Future Technology, University of Science and Technology of China, Hefei 230026, China

§ Hongyan Xi, Hongfei Gu, and Yurui Han contributed equally to this work.

Abstract

Single-atom nanozymes (SAzymes) are emerging as promising alternatives to mimic natural enzyme, which is due to high atomic utilization efficiency, well-defined geometric, and unique electronic structure. Herein, Fe single atoms supported on Ti3C2Tx (Fe-SA/Ti3C2Tx) with intrinsic peroxidase activity is developed, further constructing a sensitive Raman sensor array for sensing of five antioxidants. Fe-SA/Ti3C2Tx shows excellent peroxidase-like performance in catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with colorimetric reactions. X-ray adsorption fine structure (XAFS) reveals that the electron transport between the Ti3C2Tx and Fe atoms occurs along Fe-O-Ti ligands, meanwhile the density functional theory (DFT) calculations confirm the spontaneous dissociation of H2O2 and the formation of OH radicals. Furthermore, the peroxidase-like Fe-SA/Ti3C2Tx was used as surface enhanced Raman scattering (SERS) substrate of oxidized TMB (TMB+) and achieved satisfied signal amplification performance. Using the blocking effects of free radical reactions, one-off identification of 5 antioxidants, including ascorbic acid (AA), uric acid (UA), glutathione (GSH), melatonin (Mel), and tea polyphenols (TPP), could be realized with this high identifiable catalytic property. This principle could realize 100% distinguish accuracy combined with linear discriminant analysis (LDA) and heat map data analysis. A wide detection concentration ranges from 10−8 to 10−3 M for five antioxidants was also achieved.

Keywords: single atom catalyst, surface enhanced Raman scattering (SERS), Ti3C2Tx MXene, antioxidants, atomic interface site

References(73)

[1]

Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

[2]

Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

[3]

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

[4]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[5]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[6]

Zhang, H. B.; Cheng, W. R.; Luan, D. Y.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem., Int. Ed. 2021, 60, 13177–13196.

[7]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[8]

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

[9]

Wang, Z. H.; Wu, F. G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthc. Mater. 2022, 11, 2101682.

[10]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[11]

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

[12]

Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385–397.

[13]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[14]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[15]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[16]

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

[17]

Zhang, Q. Q.; Duan, Z. Y.; Li, M.; Guan, J. Q. Atomic cobalt catalysts for the oxygen evolution reaction. Chem. Commun. 2020, 56, 794–797.

[18]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[19]

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Guan, J. Q. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B:Environ. 2019, 257, 117930.

[20]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[21]

Bai, L.; Duan, Z. Y.; Wen, X. D.; Guan, J. Q. Bifunctional atomic iron-based catalyst for oxygen electrode reactions. J. Catal. 2019, 378, 353–362.

[22]

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

[23]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[24]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[25]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[26]

Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X. M.; Lay, C. L.; Sim, H. Y. F.; Kao, Y. C.; An, Q.; Ling, X. Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756.

[27]

Lai, H. S.; Li, G. K.; Xu, F. G.; Zhang, Z. M. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering—A review. J. Mater. Chem. C 2020, 8, 2952–2963.

[28]

Ma, X. W.; Wen, S. S.; Xue, X. X.; Guo, Y.; Jin, J.; Song, W.; Zhao, B. Controllable synthesis of SERS-active magnetic metal-organic framework-based nanocatalysts and their application in photoinduced enhanced catalytic oxidation. ACS Appl. Mater. Interfaces 2018, 10, 25726–25736.

[29]

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

[30]

Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

[31]

Sun, H. Z.; Cong, S.; Zheng, Z. H.; Wang, Z.; Chen, Z. G.; Zhao, Z. G. Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019, 141, 870–878.

[32]

Jurs, P. C.; Bakken, G. A.; McClelland, H. E. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 2000, 100, 2649–2678.

[33]

Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Cross-reactive chemical sensor arrays. Chem. Rev. 2000, 100, 2595–2626.

[34]

Montuschi, P.; Mores, N.; Trové, A.; Mondino, C.; Barnes, P. J. The electronic nose in respiratory medicine. Respiration 2013, 85, 72–84.

[35]

Röck, F.; Barsan, N.; Weimar, U. Electronic nose:  Current status and future trends. Chem. Rev. 2008, 108, 705–725.

[36]

Loutfi, A.; Coradeschi, S.; Mani, G. K.; Shankar, P.; Rayappan, J. B. B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111.

[37]

Zhang, C. C.; Chen, P. L.; Hu, W. P. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107.

[38]

Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17.

[39]

Yan, F.; Su, B. Tailoring molecular permeability of nanochannel-micelle membranes for electrochemical analysis of antioxidants in fruit juices without sample treatment. Anal. Chem. 2016, 88, 11001–11006.

[40]
Hu, L. Z.; Deng, L.; Alsaiari, S.; Zhang, D. Y.; Khashab, N. M. “Light-on” sensing of antioxidants using gold nanoclusters. Anal. Chem. 2014, 86, 4989–4994.
[41]

Zhu, X. H.; Zhao, T. B.; Nie, Z.; Liu, Y.; Yao, S. Z. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal. Chem. 2015, 87, 8524–8530.

[42]

Sautin, Y. Y.; Johnson, R. J. Uric acid: The oxidant-antioxidant paradox. Nucl., Nucl. Nucl. Acids 2008, 27, 608–619.

[43]

Luo, Y. P.; Zhang, L. M.; Liu, W.; Yu, Y. Y.; Tian, Y. A single biosensor for evaluating the levels of copper ion and L-cysteine in a live rat brain with Alzheimer’s disease. Angew. Chem., Int. Ed. 2015, 54, 14053–14056.

[44]

Huang, W.; Deng, Y. Q.; He, Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens. Bioelectron. 2017, 91, 89–94.

[45]

Andreu-Navarro, A.; Fernández-Romero, J. M.; Gómez-Hens, A. Determination of antioxidant additives in foodstuffs by direct measurement of gold nanoparticle formation using resonance light scattering detection. Anal. Chim. Acta 2011, 695, 11–17.

[46]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[47]

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

[48]

Bao, Y. W.; Hua, X. W.; Ran, H. H.; Zeng, J.; Wu, F. G. Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H2O2 and glucose. J. Mater. Chem. B 2019, 7, 296–304.

[49]

Ragg, R.; Natalio, F.; Tahir, M. N.; Janssen, H.; Kashyap, A.; Strand, D.; Strand, S.; Tremel, W. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 2014, 8, 5182–5189.

[50]

Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224.

[51]

Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

[52]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[53]

Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F detection. Nanoscale 2016, 8, 13562–13567.

[54]

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.

[55]

Zhao, Y. T.; Yang, M. M.; Fu, Q. Q.; Ouyang, H.; Wen, W.; Song, Y.; Zhu, C. Z.; Lin, Y. H.; Du, D. A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal. Chem. 2018, 90, 7391–7398.

[56]

Jiao, L.; Zhang, L. H.; Du, W. W.; Li, H.; Yang, D. Y.; Zhu, C. Z. Au@Pt nanodendrites enhanced multimodal enzyme-linked immunosorbent assay. Nanoscale 2019, 11, 8798–8802.

[57]

Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651–661.

[58]
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
[59]

Zeng, R. J.; Luo, Z. B.; Zhang, L. J.; Tang, D. P. Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal. Chem. 2018, 90, 12299–12306.

[60]

Yu, Z. Z.; Tang, Y.; Cai, G. N.; Ren, R. R.; Tang, D. P. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Anal. Chem. 2019, 91, 1222–1226.

[61]

Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.

[62]

Snyder, B. E. R.; Vanelderen, P.; Bols, M. L.; Hallaert, S. D.; Böttger, L. H.; Ungur, L.; Pierloot, K.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016, 536, 317–321.

[63]

Kim, D.; Shin, K.; Kwon, S. G.; Hyeon, T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv. Mater. 2018, 30, 1802309.

[64]

Ross, M. O.; MacMillan, F.; Wang, J. Z.; Nisthal, A.; Lawton, T. J.; Olafson, B. D.; Mayo, S. L.; Rosenzweig, A. C.; Hoffman, B. M. Particulate methane monooxygenase contains only mononuclear copper centers. Science 2019, 364, 566–570.

[65]

Chen, W. H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695.

[66]

Cong, Y. W.; Xiao, H. H.; Xiong, H. J.; Wang, Z. G.; Ding, J. X.; Li, C.; Chen, X. S.; Liang, X. J.; Zhou, D. F.; Huang, Y. B. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 2018, 30, 1706220.

[67]

Liu, Y.; Zhao, Y. L.; Chen, X. Y. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics 2019, 9, 3122–3133.

[68]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 132, 2565–2576.

[69]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[70]

Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

[71]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[72]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[73]

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

File
12274_2023_5739_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2023
Revised: 10 April 2023
Accepted: 13 April 2023
Published: 13 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872011, 51902011, and 22005013), Beijing Natural Science Foundation (No. 2212018), Beijing Institute of Technology Research Fund Program for Young Scholars (No. 2022CX01011), and Chinese Academy of Sciences. The authors thank the BL1W1B and 4B7B in the Beijing Synchrotron Radiation Facility (BSRF) for help with characterizations.

Return