Journal Home > Volume 17 , Issue 1

It is important and challenging to analyze nanocluster structure with atomic precision. Herein, α-hemolysin nanopore was used to identify nanoclusters at the single molecule level by providing two-dimensional (2D) dwell time–current blockage spectra and translocation event frequency which sensitively depended on their structures. Nanoclusters such as Anderson, Keggin, Dawson, and a few lacunary Dawson polyoxometalates with very similar structures, even with only a two-atom difference, could be discriminated. This nanopore device could simultaneously measure multiple nanoclusters in a mixture qualitatively and quantitatively. Furthermore, molecular dynamics (MD) simulations provided microscopic understandings of the nanocluster translocation dynamics and yielded 2D dwell time–current blockage spectra in close agreement with experiments. The nanopore platform provides a novel powerful tool for nanocluster characterization.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Real-time identification of multiple nanoclusters with a protein nanopore in single-cluster level

Show Author's information Ling Zhang1,§Peilei He1,§Huang Chen2,§Qingda Liu1Libo Li2( )Xun Wang1( )Jinghong Li1,3,4,5( )
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
School of Chemistry and Chemical Engineering, Guangdong Prov Key Lab Green Chem Prod Technol, South China University of Technology, Guangzhou 510640, China
New Cornerstone Science Laboratory, Shenzhen 518054, China
Beijing Institute of Life Science and Technology, Beijing 102206, China
Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China

§ Ling Zhang, Peilei He, and Huang Chen contributed equally to this work.

Abstract

It is important and challenging to analyze nanocluster structure with atomic precision. Herein, α-hemolysin nanopore was used to identify nanoclusters at the single molecule level by providing two-dimensional (2D) dwell time–current blockage spectra and translocation event frequency which sensitively depended on their structures. Nanoclusters such as Anderson, Keggin, Dawson, and a few lacunary Dawson polyoxometalates with very similar structures, even with only a two-atom difference, could be discriminated. This nanopore device could simultaneously measure multiple nanoclusters in a mixture qualitatively and quantitatively. Furthermore, molecular dynamics (MD) simulations provided microscopic understandings of the nanocluster translocation dynamics and yielded 2D dwell time–current blockage spectra in close agreement with experiments. The nanopore platform provides a novel powerful tool for nanocluster characterization.

Keywords: real-time detection, nanocluster, polyoxometalates, single-molecule, nanopore

References(43)

[1]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[2]

Liu, Q. D.; He, P. L.; Yu, H. D.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 2019, 5, eaa1081.

[3]

Vilà-Nadal, L.; Mitchell, S. G.; Long, D. L.; Rodríguez-Fortea, A.; López, X.; Poblet, J. M.; Cronin. L. Exploring the rotational isomerism in non-classical Wells–Dawson anions {W18X}: A combined theoretical and mass spectrometry study. Dalton Trans. 2012, 41, 2264–2271.

[4]

Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.

[5]

Gao, W. P.; Tieu, P.; Addiego, C.; Ma, Y. L.; Wu, J. B.; Pan, X. Q. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. Sci. Adv. 2019, 5, eaau9590.

[6]

Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

[7]

Reetz, M. T.; Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402.

[8]

Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.

[9]

Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667.

[10]

Neidig, M. L.; Sharma, J.; Yeh, H. C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 2011, 133, 11837–11839.

[11]

Cai, R. S.; Ellis, P. R; Yin, J. L.; Liu, J.; Brown, C. M.; Griffin, R.; Chang, G. J.; Yang, D. J.; Ren, J.; Cooke, K. et al. Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small 2018, 14, 1703734.

[12]

Chiu, T. H.; Liao, J. H.; Gam, F.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-containing eight-electron Pt/Ag superatoms: Structure, bonding, and multi-NMR studies. J. Am. Chem. Soc. 2022, 144, 10599–10607.

[13]

Ma, H.; Ying, Y. L. Recent progress on nanopore electrochemistry and advanced data processing. Curr. Opin. Electrochem. 2021, 26, 100675.

[14]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[15]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[16]

Ying, Y. L.; Hu, Z. L.; Zhang, S. L.; Qing, Y. J.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y. T. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 2022, 17, 1136–1146.

[17]

Wang, Y. Q.; Zhang, S. Y.; Jia, W. D.; Fan, P. P.; Wang, L. Y.; Li, X. Y.; Chen, J. L.; Cao, Z. Y.; Du, X. Y.; Liu, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 2022, 17, 976–983.

[18]

Niu, X. L.; Liu, Q. H.; Xu, Z. H.; Chen, Z. F.; Xu, L. H.; Xu, L. H.; Li, J. H.; Fang, X. Y. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat. Commun. 2020, 11, 5496.

[19]

Tsutsui, M.; He, Y. H.; Yokota, K.; Arima, A.; Hongo, S.; Taniguchi, M.; Washio, T.; Kawai, T. Particle trajectory-dependent ionic current blockade in low-aspect-ratio pores. ACS Nano 2016, 10, 803–809.

[20]

German, S. R.; Hurd, T. S.; White, H. S.; Mega, T. L. Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 2015, 9, 7186–7194.

[21]

Panday, N.; Qian, G. M.; Wang, X. W.; Chang, S.; Pandey, P.; He, J. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette. ACS Nano 2016, 10, 11237–11248.

[22]

Song, L. Z.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1865.

[23]

Campos, E.; McVey, C. E.; Carney, R. P.; Stellacci, F.; Astier, Y.; Yates, J. Sensing single mixed-monolayer protected gold nanoparticles by the α-hemolysin nanopore. Anal. Chem. 2013, 85, 10149–10158.

[24]

Campos, E. J.; McVey, C. E.; Astier, Y. Stochastic detection of MPSA-gold nanoparticles using a α-hemolysin nanopore equipped with a noncovalent molecular adaptor. Anal. Chem. 2016, 88, 6214–6222.

[25]

Ettedgui, J.; Kasianowicz, J. J.; Balijepalli, A. Single molecule discrimination of heteropolytungstates and their isomers in solution with a nanometer-scale pore. J. Am. Chem. Soc. 2016, 138, 7228–7231.

[26]

Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI). Polyhedron 1987, 6, 213–218.

[27]

Tayebee, R. Epoxidation of some olefins with hydrogen peroxide catalyzed by heteropolyoxometalates. Asian J. Chem. 2008, 20, 8–14.

[28]

Graham, C. R.; Finke, R. G. The classic Wells–Dawson polyoxometalate, K6[α-P2W18O62]·14H2O. Answering an 88 year-old question: What is its preferred, optimum synthesis? Inorg. Chem. 2008, 47, 3679–3686.

[29]
Ginsberg, A. P. Inorganic Syntheses; John Wiley and Sons Press: New York, 1990; pp 104–111.
DOI
[30]

Ke, Q.; Gong, X. T.; Liao, S. W.; Duan, C. X.; Li, L. B. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022, 365, 120116.

[31]

Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.

[32]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

[33]

Long, D. L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121.

[34]

Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic–inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.

[35]

Wang, Y. F.; Weinstock, I. A. Cation mediated self-assembly of inorganic cluster anion building blocks. Dalton Trans. 2010, 39, 6143–6152.

[36]

Wang, X. C.; Zhou, Y.; Chen, G. J.; Li, J.; Long, Z. Y.; Wang, J. Morphology-controlled preparation of heteropolyanion-derived mesoporous solid base. ACS Sustainable Chem. Eng. 2014, 2, 1918–1927.

[37]

López, X.; Nieto-Draghi, C.; Bo, C.; Avalos, J. B.; Poblet, J. M. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O403− Keggin anion in aqueous media. J. Phys. Chem. A 2005, 109, 1216–1222.

[38]

Moussawi, M. A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: From primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 2017, 139, 12793–12803.

[39]

Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 2021, 1, 967–976.

[40]

Deamer, D. W.; Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 2002, 35, 817–825.

[41]
Liao, S. W.; Ke, Q.; Wei, Y. Y.; Li, L. B. Water’s motions in x–y and z directions of 2D nanochannels: Entirely different but tightly coupled. Nano Res., in press, https://doi.org/10.1007/s12274-023-5451-2.
DOI
[42]

Zhao, D. H.; Chen, H.; Wang, Y. Q.; Li, B.; Duan, C. X.; Li, Z. X.; Li, L. B. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Front. Chem. Sci. Eng. 2021, 15, 922–934.

[43]

Henrickson, S. E.; Misakian, M.; Robertson, B.; Kasianowicz, J. J. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 2000, 85, 3057–3060.

File
12274_2023_5738_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2023
Revised: 13 April 2023
Accepted: 13 April 2023
Published: 08 June 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA1200104), New Cornerstone Science Foundation, the National Natural Science Foundation of China (Nos. 22027807, 22034004, and 22078104), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and Tsinghua-Vanke Special Fund for Public Health and Health Discipline Development (No. 2022Z82WKJ003). CPU hours allocated by the Guangzhou Supercomputer Center of China are gratefully acknowledged.

Return