Journal Home > Volume 16 , Issue 7

Developing stable and efficient catalysts for the electroreduction of nitrogen remains a huge challenge and single atom catalysts (SACs) are expected to achieve relatively high ammonia selectivity at low applied potential. Based on density functional theory calculations, the potential application of 27 single transition metal (TM = Sc–Zn, Y–Ag, Hf–Au) atoms supported by N(O)-dual-doped graphene (TM-O2N2/G) for the electroreduction of nitrogen is intensively investigated. At low nitrogen coverage, W(Mo, Nb, Ta)-O2N2/G are predicted to yield low ammonia selectivity (< 13%) at limiting-potential of −0.58, −0.53, −0.56, and −0.76 V starting from adsorbed nitrogen with side-on mode, respectively. With the increasing N2 coverage, the TM-O2N2/G is reconstructed as TM-(N2)2N2/graphene. The electroreduction of nitrogen proceeds from end-on adsorbed nitrogen molecule with high ammonia selectivity, and the limiting-potentials are theoretically predicted as −0.20, −0.40, −0.29, and −0.21 V on W(Mo, Nb, Ta)-(N2)2N2/G, respectively. It is suggested that utilizing the reorganization of local coordination environments of SACs by high coverage of reactant molecules under reaction condition can not only enhance the activity at lower limiting-potential but also improve the ammonia selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene

Show Author's information Zhiqiang Bai1,2Wenhua Zhang3( )Yufang Liu1( )
School of Physics, Henan Normal University, Xinxiang 453007, China
School of Cable Engineering, Henan Institute of Technology, Xinxiang 453000, China
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

Developing stable and efficient catalysts for the electroreduction of nitrogen remains a huge challenge and single atom catalysts (SACs) are expected to achieve relatively high ammonia selectivity at low applied potential. Based on density functional theory calculations, the potential application of 27 single transition metal (TM = Sc–Zn, Y–Ag, Hf–Au) atoms supported by N(O)-dual-doped graphene (TM-O2N2/G) for the electroreduction of nitrogen is intensively investigated. At low nitrogen coverage, W(Mo, Nb, Ta)-O2N2/G are predicted to yield low ammonia selectivity (< 13%) at limiting-potential of −0.58, −0.53, −0.56, and −0.76 V starting from adsorbed nitrogen with side-on mode, respectively. With the increasing N2 coverage, the TM-O2N2/G is reconstructed as TM-(N2)2N2/graphene. The electroreduction of nitrogen proceeds from end-on adsorbed nitrogen molecule with high ammonia selectivity, and the limiting-potentials are theoretically predicted as −0.20, −0.40, −0.29, and −0.21 V on W(Mo, Nb, Ta)-(N2)2N2/G, respectively. It is suggested that utilizing the reorganization of local coordination environments of SACs by high coverage of reactant molecules under reaction condition can not only enhance the activity at lower limiting-potential but also improve the ammonia selectivity.

Keywords: nitrogen reduction reaction, single atom catalysis, electroreduction, local structure reorganization, doped graphene

References(51)

[1]

Schlögl, R. Catalytic synthesis of ammonia-a “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

[2]

Leigh, G. J. A fixation with fixation. Science 1995, 268, 827–828.

[3]

Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013, 257, 2551–2564.

[4]

Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594.

[5]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[6]

Rittle, J.; Peters, J. C. An Fe-N2 complex that generates hydrazine and ammonia via Fe=NNH2: Demonstrating a hybrid distal-to-alternating pathway for N2 reduction. J. Am. Chem. Soc. 2016, 138, 4243–4248.

[7]

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

[8]

Zhao, S. L.; Lu, X. Y.; Wang, L. Z.; Gale, J.; Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.

[9]

Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

[10]

Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.

[11]

Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

[12]

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Publisher Correction: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 467.

[13]

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

[14]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[15]

Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

[16]

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

[17]

Yang, C. Y.; Huang, B. L.; Bai, S. X.; Feng, Y. G.; Shao, Q.; Huang, X. Q. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 2020, 32, 2001267.

[18]

Jiao, D. X.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study. J. Mater. Chem. A 2021, 9, 1240–1251.

[19]

Wang, X. L.; Yang, L. M. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J. Mater. Chem. A 2022, 10, 1481–1496.

[20]

Wen, Z. L.; Lv, H. F.; Wu, X. J. Single-atom low-valent alkaline-earth-metal catalysts for electrochemical nitrogen reduction with an acceptance-backdonation mechanism. ACS Appl. Mater. Interfaces 2022, 14, 52079–52086.

[21]

Yuan, S. F.; Meng, G. D.; Liu, D. Y.; Zhao, W.; Zhu, H. Y.; Chi, Y. H.; Ren, H.; Guo, W. Y. Synergy of substrate chemical environments and single-atom catalysts promotes catalytic performance: Nitrogen reduction on chiral and defected carbon nanotubes. ACS Appl. Mater. Interfaces 2022, 14, 52544–52552.

[22]

Zhang, Y. Q.; Wang, X. H.; Liu, T. Y.; Dang, Q.; Zhu, L.; Luo, Y.; Jiang, J.; Tang, S. B. Charge and spin communication between dual metal single-atom sites on C2N sheets: Regulating electronic spin moments of Fe atoms for N2 activation and reduction. J. Mater. Chem. A 2022, 10, 23704–23711.

[23]

Huang, C. X.; Lv, S. Y.; Li, C.; Peng, B.; Li, G. L.; Yang, L. M. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res. 2022, 15, 4039–4047.

[24]

Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

[25]

Zhao, W. H.; Chen, L. L.; Zhang, W. H.; Yang, J. L. Single Mo1(W1, Re1) atoms anchored in pyrrolic-N3 doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6547–6554.

[26]

Ma, Z. Y.; Lv, P.; Wu, D. H.; Li, X.; Chu, K.; Ma, D. W.; Jia, Y. V (Nb) single atoms anchored by the edge of a graphene armchair nanoribbon for efficient electrocatalytic nitrogen reduction: A theoretical study. Inorg. Chem. 2022, 61, 17864–17872.

[27]

Wu, T. W.; Melander, M. M.; Honkala, K. Coadsorption of NRR and HER intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction. ACS Catal. 2022, 12, 2505–2512.

[28]

Zou, H. Y.; Arachchige, L. J.; Rong, W. F.; Tang, C.; Wang, R. H.; Tan, S.; Chen, H.; He, D. S.; Hu, J. H.; Hu, E. Y. et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonation. Adv. Funct. Mater. 2022, 32, 2200333.

[29]

Wang, L. B.; Zhang, W. B.; Wang, S. P.; Gao, Z. H.; Luo, Z. H.; Wang, X.; Zeng, R.; Li, A. W.; Li, H. L.; Wang, M. L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 2016, 7, 14036.

[30]

Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang, X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.

[31]

Liu, X. H.; Deng, Y. C.; Zheng, L. R.; Kesama, M. R.; Tang, C.; Zhu, Y. F. Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 2022, 12, 5517–5526.

[32]

Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488.

[33]

Mao, K. K.; Li, L.; Zhang, W. H.; Pei, Y.; Zeng, X. C.; Wu, X. J.; Yang, J. L. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: A CO-promoted O2 activation. Sci. Rep. 2014, 4, 5441.

[34]

Liu, X.; Xu, M.; Wan, L. Y.; Zhu, H. D.; Yao, K. X.; Linguerri, R.; Chambaud, G.; Han, Y.; Meng, C. G. Superior catalytic performance of atomically dispersed palladium on graphene in CO oxidation. ACS Catal. 2020, 10, 3084–3093.

[35]

Zhang, W. H.; Fu, Q.; Luo, Q. Q.; Sheng, L.; Yang, J. L. Understanding single-atom catalysis in view of theory. JACS Au 2021, 1, 2130–2145.

[36]

Liu, X.; Zhang, X.; Meng, C. G. Coadsorption interfered CO oxidation over atomically dispersed Au on h-BN. Molecules 2022, 27, 3627.

[37]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[38]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[40]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[41]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[42]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[43]

Gray, C. M.; Saravanan, K.; Wang, G. F.; Keith, J. A. Quantifying solvation energies at solid/liquid interfaces using continuum solvation methods. Mol. Simul. 2017, 43, 420–427.

[44]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[45]
U. S. Department of Commerce. Computational Chemistry Comparison and Benchmark DataBase [Online]. http://cccbdb.nist.gov/ (accessed May 22, 2022).
[46]

Cheng, X. F.; He, J. H.; Ji, H. Q.; Zhang, H. Y.; Cao, Q.; Sun, W. J.; Yan, C. L.; Lu, J. M. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv. Mater. 2022, 34, 2205767.

[47]
Geng, D.; Huang, Y. C.; Yuan, S. F.; Jiang, Y. Y.; Ren, H.; Zhang, S.; Liu, Z.; Feng, J.; Wei, T.; Fan, Z. J. Coordination engineering of defective cobalt-nitrogen-carbon electrocatalysts with graphene quantum dots for boosting oxygen reduction reaction. Small, in press,DOI: 10.1002/smll.202207227.
[48]

Chun, H. J.; Apaja, V.; Clayborne, A.; Honkala, K.; Greeley, J. Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt(100). ACS Catal. 2017, 7, 3869–3882.

[49]

Clayborne, A.; Chun, H. J.; Rankin, R. B.; Greeley, J. Elucidation of pathways for NO electroreduction on Pt(111) from first principles. Angew. Chem., Int. Ed. 2015, 54, 8255–8258.

[50]

Zou, H. Y.; Rong, W. F.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. USA 2020, 117, 29462–29468.

[51]

Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

File
12274_2023_5734_MOESM1_ESM.pdf (3.2 MB)
12274_2023_5734_MOESM2_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2023
Revised: 04 April 2023
Accepted: 12 April 2023
Published: 11 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is partially supported by the National Key Research and Development Program of China (No. 2018YFA0208600), the National Natural Science Foundation of China (Nos. U19A2015 and 11974103), CAS Project for Young Scientists in Basic Research (No. YSBR-051), and Zhongyuan Scholar of Henan Province (No. 224000510007). Wenhua Zhang is supported by USTC Tang Scholarship, and the calculations are performed on the High Performance Computing Center of Henan Normal University and the supercomputing center of the University of Science and Technology of China (No. USTC-SCC).

Return