Journal Home > Volume 16 , Issue 9

Triboelectric nanogenerator (TENG) is a new cost-effective blue energy harvesting technology for its great performance in low frequency. However, many related energy harvesters operate on water surface, ignoring the ocean’s depth. Herein, a chain-flipped plate TENG (CFP-TENG), consisting of longitudinally arranged repeating units, is proposed to collect wave energy. The chain structure design allows the surface wave energy to act effectively on the underwater generator. The maximum output power per unit ocean area reaches 1.5 W·m−2 at a loading resistance of 30 MΩ. Optimization of device parameters and application demonstrations are explored. Compared with previous works, the utilization rate of wave energy has been significantly improved. This work not only provides a new method to optimize the output of TENG but also makes a crucial step in promoting practical applications of TENG in renewable blue energy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy

Show Author's information Yan DuQian Tang( )Shaoke FuChuncai ShanQixuan ZengHengyu GuoChenguo Hu( )
Department of Applied Physics, Chongqing University, Chongqing 400044, China

Abstract

Triboelectric nanogenerator (TENG) is a new cost-effective blue energy harvesting technology for its great performance in low frequency. However, many related energy harvesters operate on water surface, ignoring the ocean’s depth. Herein, a chain-flipped plate TENG (CFP-TENG), consisting of longitudinally arranged repeating units, is proposed to collect wave energy. The chain structure design allows the surface wave energy to act effectively on the underwater generator. The maximum output power per unit ocean area reaches 1.5 W·m−2 at a loading resistance of 30 MΩ. Optimization of device parameters and application demonstrations are explored. Compared with previous works, the utilization rate of wave energy has been significantly improved. This work not only provides a new method to optimize the output of TENG but also makes a crucial step in promoting practical applications of TENG in renewable blue energy.

Keywords: triboelectric nanogenerator, blue energy, chain-flip plate, wave energy

References(47)

[1]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[2]

Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Guo, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.

[3]

Liang, X.; Jiang, T.; Liu, G. X.; Xiao, T. X.; Xu, L.; Li, W.; Xi, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1807241.

[4]

Du, Y.; Fu, S. K.; Shan, C. C.; Wu, H. Y.; He, W. C.; Wang, J.; Guo, H. Y.; Li, G.; Wang, Z.; Hu, C. G. A novel design based on mechanical time-delay switch and charge space accumulation for high output performance direct-current triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2208783.

[5]

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

[6]

Du, Y.; Tang, Q.; He, W. C.; Liu, W. L.; Wang, Z.; Wu, H. Y.; Li, G.; Guo, H. Y.; Li, Z. J.; Peng, Y. et al. Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy 2021, 90, 106543.

[7]

Xu, Y. H.; Yang, W. X.; Lu, X. H.; Yang, Y. F.; Li, J. P.; Wen, J. M.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 2021, 15, 16368–16375.

[8]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[9]

Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

[10]

Xu, L. Y.; Xu, L.; Luo, J. J.; Yan, Y.; Jia, B. E.; Yang, X. D.; Gao, Y. H.; Wang, Z. L. Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 2020, 10, 2001669.

[11]

Li, X. Y.; Zhang, C. G.; Gao, Y. K.; Zhao, Z. H.; Hu, Y. X.; Yang, O.; Liu, L.; Zhou, L. L.; Wang, J.; Wang, Z. L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 15, 1334–1345.

[12]

Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

[13]

Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

[14]

He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

[15]

Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

[16]

Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

[17]
Zhou, L. L.; Gao, Y. K.; Liu, D.; Liu, L.; Zhao, Z. Z.; Li, S. X.; Yuan, W.; Cui, S. N.; Wang, Z. L.; Wang, J. Achieving ultrarobust and humidity-resistant triboelectric nanogenerator by dual-capacitor enhancement system. Adv. Energy Mater. in press, https://doi.org/10.1002/aenm.202101958.
DOI
[18]

Cheng, B. L.; Xu, Q.; Ding, Y. Q.; Bai, S.; Jia, X. F.; Yu, Y. D. C.; Wen, J.; Qin, Y. High performance temperature difference triboelectric nanogenerator. Nat. Commun. 2021, 12, 4782.

[19]

Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

[20]

Chao, S. Y.; Ouyang, H.; Jiang, D. J.; Fan, Y. B.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2020, 3, e12072.

[21]

Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

[22]

He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; Xi, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research 2022, 2022, 9812865.

[23]

Han, K.; Tang, W.; Chen, J.; Luo, J. J.; Xu, L.; Wang, Z. L. Effects of environmental atmosphere on the performance of contact–separation mode TENG. Adv. Mater. Technol. 2019, 4, 1800569.

[24]

Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

[25]

Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

[26]

Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

[27]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[28]

Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

[29]

Leng, Z. W.; Zhu, P. C.; Wang, X. C.; Wang, Y. F.; Li, P. S.; Huang, W.; Li, B. C.; Jin, R.; Han, N. N.; Wu, J. et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human–machine merging interface. Adv. Funct. Mater. 2023, 33, 2211056.

[30]

Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

[31]

Zhao, L. C.; Zou, H. X.; Zhao, Y. J.; Wu, Z. Y.; Liu, F. R.; Wei, K. X.; Zhang, W. M. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Appl. Energy 2022, 314, 118983.

[32]

Zhao, L. C.; Zou, H. X.; Xie, X.; Guo, D. H.; Gao, Q. H.; Wu, Z. Y.; Yan, G.; Wei, K. X.; Zhang, W. M. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 2023, 108, 108222.

[33]

Shan, C. C.; He, W. C.; Wu, H. Y.; Fu, S. K.; Tang, Q.; Wang, Z.; Du, Y.; Wang, J.; Guo, H. Y.; Hu, C. G. A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 2022, 12, 2200963.

[34]

He, W. C.; Shan, C. C.; Wu, H. Y.; Fu, S. K.; Li, Q. Y.; Li, G.; Zhang, X. M.; Du, Y.; Wang, J.; Wang, X. et al. Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 2022, 12, 2201454.

[35]

Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

[36]

Tan, D. J.; Zeng, Q. X.; Wang, X.; Yuan, S. L.; Luo, Y. L.; Zhang, X. F.; Tan, L. M.; Hu, C. G.; Liu, G. L. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 2022, 14, 124.

[37]

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

[38]

Lei, R.; Zhai, H.; Nie, J. H.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X. Y.; Wang, Z. L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514.

[39]

Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

[40]

Zhang, D. H.; Shi, J. W.; Si, Y. L.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140.

[41]

Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

[42]

Liu, W. B.; Xu, L.; Bu, T. Z.; Yang, H.; Liu, G. X.; Li, W. J.; Pang, Y. K.; Hu, C. X.; Zhang, C.; Cheng, T. H. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 2019, 58, 499–507.

[43]

Zhang, Z. Y.; Hu, Z. Y.; Wang, Y.; Wang, Y. W.; Zhang, Q. Q.; Liu, D. H.; Wang, H.; Xu, M. Y. Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies. J. Mar. Sci. Eng. 2022, 10, 455.

[44]

Meng, L. X.; Yang, Y. F.; Liu, S. M.; Wang, S.; Zhang, T.; Guo, X. L. Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 2023, 8, 1362–1368.

[45]

Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.

[46]

Xia, K. Q.; Fu, J. M.; Xu, Z. W. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2000426.

[47]

Ahmed, A.; Saadatnia, Z.; Hassan, I.; Zi, Y. L.; Xi, Y.; He, X.; Zu, J.; Wang, Z. L. Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 2017, 7, 1601705.

Video
12274_2023_5733_MOESM2_ESM.mp4
12274_2023_5733_MOESM3_ESM.mp4
12274_2023_5733_MOESM4_ESM.mp4
12274_2023_5733_MOESM5_ESM.mp4
File
12274_2023_5733_MOESM1_ESM.pdf (970.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2023
Revised: 26 March 2023
Accepted: 09 April 2023
Published: 24 May 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program from Minister of Science and Technology (No. 2021YFA1201602) and the National Natural Science Foundation of China (Nos. U21A20147 and 52073037). The authors would like to thank Analytical and Testing Center of Chongqing University for some electrode preparations and material characterizations.

Return