Journal Home > Volume 16 , Issue 7

Piezoresistive composite elastomers have shown great potentials for wearable and flexible electronic applications due to their high sensitivity, excellent frequency response, and easy signal detection. A composition membrane sensor with an interlocked structure has been developed and demonstrated outstanding pressure sensitivity, fast response time, and low temperature drift features. Compared with a flexible MXene-based flat sensor (Ti3C2), the interlocked sensor exhibits a significantly improved pressure sensitivity of two magnitudes higher (21.04 kPa−1), a fast reaction speed of 31 ms, and an excellent cycle life of 5000 test runs. The viability of sensor in responding to various external stimuli with high deformation capacity has been confirmed by calculating the force distribution of a polydimethylsiloxane (PDMS) film model with a microlens structure using the solid mechanics module in COMSOL. Unlike conventional process, we utilized three-dimensional (3D) laser-direct writing lithography equipment to directly transform high-precision 3D data into a micro-nano structure morphology through variable exposure doses, which reduces the hot melting step. Moreover, the flexible pressure device is capable of detecting and distinguishing signals ranging from finger movements to human pulses, even for speech recognition. This simple, convenient, and large-format lithographic method offers new opportunities for developing novel human–computer interaction devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array

Show Author's information Tong Li1Zhenzong Xu1Ben Bin Xu2( )Zhanhu Guo2Yunhong Jiang3Xuehua Zhang4Maryam Bayati2Terence Xiaoteng Liu2( )Yan-Hua Liu1( )
School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada

Abstract

Piezoresistive composite elastomers have shown great potentials for wearable and flexible electronic applications due to their high sensitivity, excellent frequency response, and easy signal detection. A composition membrane sensor with an interlocked structure has been developed and demonstrated outstanding pressure sensitivity, fast response time, and low temperature drift features. Compared with a flexible MXene-based flat sensor (Ti3C2), the interlocked sensor exhibits a significantly improved pressure sensitivity of two magnitudes higher (21.04 kPa−1), a fast reaction speed of 31 ms, and an excellent cycle life of 5000 test runs. The viability of sensor in responding to various external stimuli with high deformation capacity has been confirmed by calculating the force distribution of a polydimethylsiloxane (PDMS) film model with a microlens structure using the solid mechanics module in COMSOL. Unlike conventional process, we utilized three-dimensional (3D) laser-direct writing lithography equipment to directly transform high-precision 3D data into a micro-nano structure morphology through variable exposure doses, which reduces the hot melting step. Moreover, the flexible pressure device is capable of detecting and distinguishing signals ranging from finger movements to human pulses, even for speech recognition. This simple, convenient, and large-format lithographic method offers new opportunities for developing novel human–computer interaction devices.

Keywords: MXene, flexible electronics, three-dimensional (3D) lithography, microlens array, pizoresistive, pressure sensors

References(51)

[1]

Zhong, M. J.; Zhang, L. J.; Liu, X.; Zhou, Y. N.; Zhang, M. Y.; Wang, Y. J.; Yang, L.; Wei, D. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human–machine interfaces. Chem. Eng. J. 2021, 412, 128649.

[2]

Zhang, H.; Zhang, D. Z.; Guan, J. R.; Wang, D. Y.; Tang, M. C.; Ma, Y. H.; Xia, H. A flexible wearable strain sensor for human-motion detection and a human–machine interface. J. Mater. Chem. C 2022, 10, 15554–15564.

[3]

Cao, W.; Luo, Y.; Dai, Y. M.; Wang, X.; Wu, K. L.; Lin, H. J.; Rui, K.; Zhu, J. X. Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human–machine interface. ACS Appl. Mater. Interfaces 2023, 15, 3131–3140.

[4]

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

[5]

Fu, X. Y.; Li, J. Z.; Li, D. D.; Zhao, L. J.; Yuan, Z. Y.; Shulga, V.; Han, W.; Wang, L. L. MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl. Mater. Interfaces 2022, 14, 12367–12374.

[6]

Zhu, B. W.; Ling, Y. Z.; Yap, L. W.; Yang, M. J.; Lin, F. E.; Gong, S.; Wang, Y.; An, T. C.; Zhao, Y. M.; Cheng, W. L. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 2019, 11, 29014–29021.

[7]

Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2270158.

[8]

Ren, M. N.; Sun, Z. S.; Zhang, M. Q.; Yang, X. J.; Guo, D. D.; Dong, S. H.; Dhakal, R.; Yao, Z.; Li, Y. Y.; Kim, N. Y. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Adv. 2022, 4, 3987–3995.

[9]

Yuan, L. Q.; Wang, Z. W.; Li, H. W.; Huang, Y. N.; Wang, S. G.; Gong, X.; Tan, Z. T.; Hu, Y. X.; Chen, X. S.; Li, J. et al. Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors. Adv. Mater. Technol. 2020, 5, 1901084.

[10]

Wang, C.; Gong, D.; Feng, P. B.; Cheng, Y.; Cheng, X.; Jiang, Y. G.; Zhang, D. Y.; Cai, J. Ultra-sensitive and wide sensing-range flexible pressure sensors based on the carbon nanotube film/stress-induced square frustum structure. ACS Appl. Mater. Interfaces 2023, 15, 8546–8554.

[11]

Shalabi, N.; Searles, K.; Takahata, K. Switch mode capacitive pressure sensors. Microsyst. Nanoeng. 2022, 8, 132.

[12]

Fan, L. J.; Yang, X. F.; Sun, H. Pressure sensors combining porous electrodes and electrospun nanofiber-based ionic membranes. ACS Appl. Nano Mater. 2023, 6, 3560–3571.

[13]

Chen, G. Z.; Chen, G.; Pan, L.; Chen, D. S. Electrospun flexible PVDF/GO piezoelectric pressure sensor for human joint monitoring. Diamond Relat. Mater. 2022, 129, 109358.

[14]

Abanah Shirley, J.; Esther Florence, S.; Sreeja, B. S.; Sankararajan, R. Bio-compatible piezoelectric material based wearable pressure sensor for smart textiles. Smart Mater. Struct. 2022, 31, 125015.

[15]

Zhao, Z. Z.; Huang, Q. Y.; Yan, C.; Liu, Y. D.; Zeng, X. W.; Wei, X. D.; Hu, Y. F.; Zheng, Z. J. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020, 70, 104528.

[16]

He, Y. X.; Zhou, M. Y.; Mahmoud, M. H. H.; Lu, X. S.; He, G. Y.; Zhang, L.; Huang, M. N.; Elnaggar, A. Y.; Lei, Q.; Liu, H. et al. Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater. 2022, 5, 1939–1950.

[17]

Liu, Z. Z.; Li, G. J.; Qin, Q.; Mi, L. W.; Li, G. R.; Zheng, G. Q.; Liu, C. T.; Li, Q.; Liu, X. H. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv. Compos. Hybrid Mater. 2021, 4, 1215–1225.

[18]

Shen, Y. Y.; Yang, W. K.; Hu, F. D.; Zheng, X. W.; Zheng, Y. J.; Liu, H.; Algadi, H.; Chen, K. Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv. Compos. Hybrid Mater. 2023, 6, 21.

[19]

Afroze, J. D.; Tong, L. Y.; Abden, M. J.; Chen, Y. Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 2023, 6, 18.

[20]

Khuje, S.; Sheng, A.; Yu, J.; Ren, S. Q. Flexible copper nanowire electronics for wireless dynamic pressure sensing. ACS Appl. Electron. Mater. 2021, 3, 5468–5474.

[21]

Ju, Y. H.; Han, C. J.; Kim, K. S.; Kim, J. W. UV-curable adhesive tape-assisted patterning of metal nanowires for ultrasimple fabrication of stretchable pressure sensor. Adv. Mater. Technol. 2021, 6, 2100776.

[22]

Chen, Y. K.; Yan, X.; Zhu, Y. L.; Cui, M.; Kong, L.; Kuang, M. X.; Zhang, X. Q.; Wang, R. A carbon nanotube-based textile pressure sensor with high-temperature resistance. RSC Adv. 2022, 12, 23091–23098.

[23]

Zhang, X.; Lu, L. J.; Wang, W. D.; Zhao, N.; He, P.; Liu, J. Q.; Yang, B. Flexible pressure sensors with combined spraying and self-diffusion of carbon nanotubes. ACS Appl. Mater. Interfaces 2022, 14, 38409–38420.

[24]

Lv, L. X.; Zhang, P. P.; Xu, T.; Qu, L. T. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 2017, 9, 22885–22892.

[25]

Šiškins, M.; Lee, M.; Wehenkel, D.; Van Rijn, R.; De Jong, T. W.; Renshof, J. R.; Hopman, B. C.; Peters, W. S. J. M.; Davidovikj, D.; van der Zant, H. S. J. et al. Sensitive capacitive pressure sensors based on graphene membrane arrays. Microsyst. Nanoeng. 2020, 6, 102.

[26]

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

[27]

Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.

[28]

Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

[29]

Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

[30]

Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

[31]

Liu, H.; Zhao, H. Y.; Li, S.; Hu, J. Q.; Zheng, X. R.; Li, R.; Chen, Y. L.; Su, Y. W. Adhesion-free thin-film-like curvature sensors integrated on flexible and wearable electronics for monitoring bending of joints and various body gestures. Adv. Mater. Technol. 2019, 4, 1800327.

[32]

Zhao, Y. N.; Guo, X. H.; Hong, W. Q.; Zhu, T.; Zhang, T. X.; Yan, Z. H.; Zhu, K. L.; Wang, J. Y.; Zheng, G. Q.; Mao, S. N. et al. Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing. Compos. Sci. Technol. 2023, 231, 109837.

[33]

Lei, H.; Cao, K. L.; Chen, Y. F.; Liang, Z. Q.; Wen, Z.; Jiang, L.; Sun, X. H. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821.

[34]

Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911–14919.

[35]

Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

[36]

Wan, Y. B.; Qiu, Z. G.; Hong, Y.; Wang, Y.; Zhang, J. M.; Liu, Q. X.; Wu, Z. G.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater. 2018, 4, 1700586.

[37]

Xu, C. X.; Fan, C. C.; Zhang, X. L.; Chen, H. T.; Liu, X. T.; Fu, Z. M.; Wang, R. R.; Hong, T.; Cheng, J. G. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl. Mater. Interfaces 2020, 12, 19539–19546.

[38]

Fang, Z. W.; Xu, C. X.; Zhang, X. L.; Wang, Y. C.; Xiao, T.; Wang, L.; Chen, M.; Liu, X. T. MXene (Ti3C2Tx)-supported binary Co-, Zn-doped carbon as oxygen reduction reaction catalyst for anion exchange membrane fuel cells. Energy Technol. 2022, 10, 2101168.

[39]

Shao, Y. M.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z. Z.; An, J. Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116.

[40]

Kong, D. S.; El-Bahy, Z. M.; Algadi, H.; Li, T.; El-Bahy, S. M.; Nassan, M. A.; Li, J. R.; Faheim, A. A.; Li, A.; Xu, C. X. et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 2022, 5, 1976–1987.

[41]

Wu, N. N.; Zhao, B. B.; Chen, X. Y.; Hou, C. X.; Huang, M. N.; Alhadhrami, A.; Mersal, G. A. M.; Ibrahim, M. M.; Tian, J. Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2Tx MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1548–1556.

[42]
Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater., in press, https://doi.org/10.1002/adma.202211642.
[43]
Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res., in press, https://doi.org/10.1007/s12274-023-5594-1.
[44]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[45]

Luo, W. L.; Ma, Y.; Li, T. X.; Thabet, H. K.; Hou, C. P.; Ibrahim, M. M.; El-Bahy, S. M.; Xu, B. B.; Guo, Z. H. Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage 2022, 52, 105008.

[46]

Dai, B.; Ma, Y.; Dong, F.; Yu, J.; Ma, M. L.; Thabet, H. K.; El-Bahy, S. M.; Ibrahim, M. M.; Huang, M. N.; Seok, I. et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 704–754.

[47]
Bi, X. Y.; Li, M. C.; Zhou, G. Q.; Liu, C. Z.; Huang, R. Z.; Shi, Y.; Xu, B. B.; Guo, Z. H.; Fan, W.; Algadi, H. et al. High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res., in press, https://doi.org/10.1007/s12274-023-5586-1.
[48]

Wang, Y. J.; Wang, Y.; Xu, M. T.; Dai, F. Y.; Li, Z. Flat silk cocoon pressure sensor based on a sea urchin-like microstructure for intelligent sensing. ACS Sustainable Chem. Eng. 2022, 10, 17252–17260.

[49]

Shi, R. L.; Lou, Z.; Chen, S.; Shen, G. Z. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 2018, 61, 1587–1595.

[50]

Boutry, C. M.; Nguyen, A.; Lawal, Q. O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. N. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 2015, 27, 6954–6961.

[51]

Wei, Y. D.; Luo, W. L.; Zhuang, Z.; Dai, B.; Ding, J. X.; Li, T. X.; Ma, M. L.; Yin, X. Q.; Ma, Y. Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 2021, 4, 1082–1091.

File
12274_2023_5727_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 March 2023
Revised: 07 April 2023
Accepted: 10 April 2023
Published: 20 May 2023
Issue date: July 2023

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61974100) and the National Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJA480002). This project was also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). X. H. Z. acknowledges the support from the NSERC-Alberta Innovated Advanced Program. B. B. X. and Y. H. J. are grateful for the support from the Engineering and Physical Sciences Research Council (EPSRC, UK) (Nos. EP/N007921 and EP/X02041X). Y. H. J. also acknowledges the support from the Leverhulme Trust (No. RPG-2022-177).

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return