Journal Home > Volume 17 , Issue 2

The inculcation of bioinspiration in sensing and human–machine interface (HMI) technologies can lead to distinctive characteristics such as conformability, low power consumption, high sensitivity, and unique properties like self-healing, self-cleaning, and adaptability. Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials, particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement. This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs, with a specific focus on state-of-the-art bioinspired capacitive sensors, piezoresistive sensors, piezoelectric sensors, triboelectric sensors, magnetoelastic sensors, and electrochemical sensors. We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.


menu
Abstract
Full text
Outline
About this article

Bioinspired nanomaterials for wearable sensing and human–machine interfacing

Show Author's information Vishesh Kashyap1,2Junyi Yin1Xiao Xiao1Jun Chen1( )
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

Abstract

The inculcation of bioinspiration in sensing and human–machine interface (HMI) technologies can lead to distinctive characteristics such as conformability, low power consumption, high sensitivity, and unique properties like self-healing, self-cleaning, and adaptability. Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials, particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement. This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs, with a specific focus on state-of-the-art bioinspired capacitive sensors, piezoresistive sensors, piezoelectric sensors, triboelectric sensors, magnetoelastic sensors, and electrochemical sensors. We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.

Keywords: human–machine interface, wearable sensors, bioinspired nanomaterials, wearable bioelectronics

References(177)

[1]

Su, Y. J.; Liu, Y. L.; Li, W. X.; Xiao, X.; Chen, C. X.; Lu, H. J.; Yuan, Z.; Tai, H. L.; Jiang, Y. D.; Zou, J. et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851.

[2]

Luo, Y. F.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z. N.; Berggren, M.; Berkey, C. A.; Bettinger, C. J. et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295.

[3]

Gao, Z. Y.; Xiao, X.; Di Carlo, A.; Yin, J. Y.; Wang, Y. X.; Huang, L. J.; Tang, J. G.; Chen, J. Advances in wearable strain sensors based on electrospun fibers. Adv. Funct. Mater 2023, 2214265.

[4]

Mayer, M.; Xiao, X.; Yin, J. Y.; Chen, G. R.; Xu, J.; Chen, J. Advances in bioinspired triboelectric nanogenerators. Adv. Electron. Mater. 2022, 8, 2200782.

[5]

Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

[6]

Kim, S.; Xiao, X.; Chen, J. Advances in photoplethysmography for personalized cardiovascular monitoring. Biosensors 2022, 12, 863.

[7]

Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

[8]

Yin, R. Y.; Wang, D. P.; Zhao, S. F.; Lou, Z.; Shen, G. Z. Wearable sensors-enabled human–machine interaction systems: From design to application. Adv. Funct. Mater. 2021, 31, 2008936.

[9]

Fang, Y. S.; Zhao, X.; Tat, T.; Xiao, X.; Chen, G. R.; Xu, J.; Chen, J. All-in-one conformal epidermal patch for multimodal biosensing. Matter 2021, 4, 1102–1105.

[10]

Xiao, X.; Yin, J. Y.; Chen, G. R.; Shen, S.; Nashalian, A.; Chen, J. Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter 2022, 5, 1342–1345.

[11]

Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

[12]

Chang, A.; Uy, C.; Xiao, X.; Xiao, X.; Chen, J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022, 98, 107282.

[13]

Ji, X. Q.; Rao, Z.; Zhang, W.; Liu, C.; Wang, Z. M.; Zhang, S.; Zhang, B. T.; Hu, M. L.; Servati, P.; Xiao, X. Airline point-of-care system on seat belt for hybrid physiological signal monitoring. Micromachines 2022, 13, 1880.

[14]

Parandeh, S.; Etemadi, N.; Kharaziha, M.; Chen, G. R.; Nashalian, A.; Xiao, X.; Chen, J. Advances in triboelectric nanogenerators for self-powered regenerative medicine. Adv. Funct. Mater. 2021, 31, 2105169.

[15]

Chen, G. R.; Fang, Y. S.; Zhao, X.; Tat, T.; Chen, J. Textiles for learning tactile interactions. Nat. Electron. 2021, 4, 175–176.

[16]

Lin, Z. W.; Zhang, G. Q.; Xiao, X.; Au, C.; Zhou, Y. H.; Sun, C. C.; Zhou, Z. H.; Yan, R.; Fan, E. D.; Si, S. B. et al. A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater. 2022, 32, 2109430.

[17]

Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing wearable systems for sports: A review of trends and opportunities in human-computer interaction. IEEE Trans. Hum. -Mach. Syst. 2019, 49, 314–325.

[18]

Hu, H. J.; Huang, H.; Li, M. H.; Gao, X. X.; Yin, L.; Qi, R. X.; Wu, R. S.; Chen, X. J.; Ma, Y. X.; Shi, K. R. et al. A wearable cardiac ultrasound imager. Nature 2023, 613, 667–675.

[19]

Rana, M.; Mittal, V. Wearable sensors for real-time kinematics analysis in sports: A review. IEEE Sens. J. 2021, 21, 1187–1207.

[20]

Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26.

[21]

Luo, Y.; Wang, Z. H.; Wang, J. Y.; Xiao, X.; Li, Q.; Ding, W. B.; Fu, H. Y. Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human−machine interfaces. Nano Energy 2021, 89, 106330.

[22]

Xiao, X.; Xiao, X.; Lan, Y.; Chen, J. Learning from nature for healthcare, energy, and environment. Innovation 2021, 2, 100135.

[23]

Zan, G. T.; Wu, T.; Zhang, Z. L.; Li, J.; Zhou, J. C.; Zhu, F.; Chen, H. X.; Wen, M.; Yang, X. C.; Peng, X. J. et al. Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv. Sci. 2022, 9, 2103714.

[24]

Meng, K. Y.; Xiao, X.; Liu, Z. X.; Shen, S.; Tat, T.; Wang, Z. H.; Lu, C. Y.; Ding, W. B.; He, X. M.; Yang, J. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 2022, 34, 2202478.

[25]

Xiao, X.; Zhang, C. H.; Ma, H. Y.; Zhang, Y. H.; Liu, G. L.; Cao, M. Y.; Yu, C. M.; Jiang, L. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment. ACS Nano 2019, 13, 4083–4090.

[26]

Xiao, X.; Li, S. K.; Zhu, X. D.; Xiao, X.; Zhang, C. H.; Jiang, F. M.; Yu, C. M.; Jiang, L. Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater. Nano Lett. 2021, 21, 2117–2123.

[27]

Zhang, C. H.; Zhang, B.; Ma, H. Y.; Li, Z.; Xiao, X.; Zhang, Y. H.; Cui, X. Y.; Yu, C. M.; Cao, M. Y.; Jiang, L. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano 2018, 12, 2048–2055.

[28]

Zhang, C. H.; Zhang, Y. H.; Xiao, X.; Liu, G. L.; Xu, Z.; Wang, B.; Yu, C. M.; Ras, R. H. A.; Jiang, L. Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chem. 2019, 21, 6579–6584.

[29]

Dai, B. Y.; Zhou, Y. H.; Xiao, X.; Chen, Y. K.; Guo, J. H.; Gao, C. C.; Xie, Y. N.; Chen, J. Fluid field modulation in mass transfer for efficient photocatalysis. Adv. Sci. 2022, 9, 2203057.

[30]

Liu, H. D.; Wang, C. Y.; Chen, G. R.; Liao, Y. T.; Mao, M. R.; Cheng, T.; Libanori, A.; Xiao, X.; Hu, X. J.; Liu, K. et al. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy 2022, 93, 106855.

[31]

Lamichhaney, S.; Han, F.; Berglund, J.; Wang, C.; Almén, M. S.; Webster, M. T.; Grant, B. R.; Grant, P. R.; Andersson, L. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 2016, 352, 470–474.

[32]

Xue, J. T.; Zou, Y.; Deng, Y. L.; Li, Z. Bioinspired sensor system for health care and human–machine interaction. EcoMat 2022, 4, e12209.

[33]

Muhammad, H. B.; Oddo, C. M.; Beccai, L.; Recchiuto, C.; Anthony, C. J.; Adams, M. J.; Carrozza, M. C.; Hukins, D. W. L.; Ward, M. C. L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229.

[34]

Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

[35]

Li, W. J.; Pei, Y. T.; Zhang, C.; Kottapalli, A. G. P. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021, 84, 105865.

[36]

Su, Y. J.; Wang, J. J.; Wang, B.; Yang, T. N.; Yang, B. X.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Cai, Z. X. et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075.

[37]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[38]

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

[39]

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431.

[40]

Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

[41]

Chen, G. R.; Zhao, X.; Andalib, S.; Xu, J.; Zhou, Y. H.; Tat, T.; Lin, K.; Chen, J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021, 4, 3725–3740.

[42]

Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, G. R.; Fang, Y. S.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.

[43]

Chen, G. R.; Zhou, Y. H.; Fang, Y. S.; Zhao, X.; Shen, S.; Tat, T.; Nashalian, A.; Chen, J. Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system. ACS Nano 2021, 15, 20582–20589.

[44]

Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.

[45]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[46]

Xu, J.; Tat, T.; Zhao, X.; Zhou, Y. H.; Ngo, D.; Xiao, X.; Chen, J. A programmable magnetoelastic sensor array for self-powered human–machine interface. Appl. Phys. Rev. 2022, 9, 031404.

[47]

Xu, J.; Tat, T.; Zhao, X.; Xiao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, K. R.; Chen, J. Spherical magnetoelastic generator for multidirectional vibration energy harvesting. ACS Nano 2023, 17, 3865–3872.

[48]

Zhao, X.; Nashalian, A.; Ock, I. W.; Popoli, S.; Xu, J.; Yin, J. Y.; Tat, T.; Libanori, A.; Chen, G. R.; Zhou, Y. H. et al. A soft magnetoelastic generator for wind-energy harvesting. Adv. Mater. 2022, 34, 2204238.

[49]

Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

[50]

Lee, W.; Yun, H.; Song, J. K.; Sunwoo, S. H.; Kim, D. H. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc. Mater. Res. 2021, 2, 266–281.

[51]

Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

[52]

Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

[53]

Yin, J. Y.; Zhao, Q.; Shen, Y. X.; He, B. P(LLA-co-PDO) copolymers with random and block architectures:Synthesis and characterizations. J. Appl. Polym. Sci. 2022, 139, e52410.

[54]

Zhang, C. H.; Xiao, X.; Zhang, Y. H.; Liu, Z. X.; Xiao, X.; Nashalian, A.; Wang, X. S.; Cao, M. Y.; He, X. M.; Chen, J. et al. Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport. ACS Nano 2022, 16, 9348–9358.

[55]

Wang, Q. P.; He, S. H.; Bowen, C. R.; Xiao, X.; Oh, J. A. S.; Sun, J. G.; Zeng, K. Y.; Lei, W.; Chen, J. Porous pyroelectric ceramic with carbon nanotubes for high-performance thermal to electrical energy conversion. Nano Energy 2022, 102, 107703.

[56]

Zhang, Z. J.; Xiao, X.; Zhou, Y. H.; Huang, L. J.; Wang, Y. X.; Rong, Q. L.; Han, Z. Y.; Qu, H. J.; Zhu, Z. J.; Xu, M. S. et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano 2021, 15, 13178–13187.

[57]

Fang, Y. S.; Chen, G. R.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374.

[58]

Lv, J. W.; Liu, Y. S.; Qin, Y. T.; Yin, Q.; Chen, S. Y.; Cheng, Z.; Yin, J. Y.; Dai, Y.; Liu, Y.; Liu, X. Y. Constructing “Rigid-and-Soft” interlocking stereoscopic interphase structure of aramid fiber composites with high interfacial shear strength and toughness. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106386.

[59]

Lv, J. W.; Yin, J. Y.; Qin, Y. T.; Dai, Y.; Cheng, Z.; Luo, L. B.; Liu, X. Y. Post-construction of weaving structure in aramid fiber towards improvements of its transverse properties. Compos. Sci. Technol. 2021, 208, 108780.

[60]
Puers, R. Capacitive sensors: When and how to use them. Sens. Actuators A Phys. 1993, 3738, 93–105.
DOI
[61]

Hu, X. H.; Yang, W. Q. Planar capacitive sensors-designs and applications. Sens. Rev. 2010, 30, 24–39.

[62]

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

[63]

Shen, X. Q.; Li, M. D.; Ma, J. P.; Shen, Q. D. Skin-inspired pressure sensor with MXene/P(VDF-TrFE-CFE) as active layer for wearable electronics. Nanomaterials 2021, 11, 716.

[64]

Gao, G. R.; Yang, F. J.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater. 2020, 32, 2004290.

[65]

Fiorillo, A. S.; Critello, C. D.; Pullano, S. A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175.

[66]

Duan, L. Y.; D’hooge, D. R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617.

[67]

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

[68]

Guo, Y.; Guo, Z. Y.; Zhong, M. J.; Wan, P. B.; Zhang, W. X.; Zhang, L. Q. A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human–machine interfacing. Small 2018, 14, 1803018.

[69]

Wei, Q. K.; Chen, G. R.; Pan, H.; Ye, Z. B.; Au, C.; Chen, C. X.; Zhao, X.; Zhou, Y. H.; Xiao, X.; Tai, H. L. et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 2022, 6, 2101051.

[70]

Qiu, Y.; Tian, Y.; Sun, S. S.; Hu, J. H.; Wang, Y. Y.; Zhang, Z.; Liu, A. P.; Cheng, H. Y.; Gao, W. Z.; Zhang, W. et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020, 78, 105337.

[71]

Shen, J. H.; Guo, Y. X.; Zuo, S. H.; Shi, F. W.; Jiang, J. C.; Chu, J. H. A bioinspired porous-designed hydrogel@polyurethane sponge piezoresistive sensor for human−machine interfacing. Nanoscale 2021, 13, 19155–19164.

[72]

Cao, W.; Luo, Y.; Dai, Y. M.; Wang, X.; Wu, K. L.; Lin, H. J.; Rui, K.; Zhu, J. X. Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human–machine interface. ACS Appl. Mater. Interfaces 2023, 15, 3131–3140.

[73]

Sun, Y.; Shen, S.; Deng, W. L.; Tian, G.; Xiong, D.; Zhang, H. R.; Yang, T.; Wang, S. L.; Chen, J.; Yang, W. Q. Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy 2023, 105, 108024.

[74]

Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

[75]

Lan, B. L.; Xiao, X.; Di Carlo, A.; Deng, W. L.; Yang, T.; Jin, L.; Tian, G.; Ao, Y.; Yang, W. Q.; Chen, J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 2022, 32, 2207393.

[76]

Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

[77]

Tadigadapa, S.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001.

[78]

De Rossi, D.; Carpi, F.; Scilingo, E. P. Polymer based interfaces as bioinspired ‘smart skins’. Adv. Colloid Interface Sci. 2005, 116, 165–178.

[79]

Hwang, W. S.; Park, H. C. Finite element modeling of piezoelectric sensors and actuators. AIAA J. 1993, 31, 930–937.

[80]

Viola, G.; Chang, J. K.; Maltby, T.; Steckler, F.; Jomaa, M.; Sun, J. F.; Edusei, J.; Zhang, D.; Vilches, A.; Gao, S. et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 34643–34657.

[81]

Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 2018, 12, 8588–8596.

[82]

Chun, K. Y.; Son, Y. J.; Jeon, E. S.; Lee, S.; Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 2018, 30, 1706299.

[83]

Kim, D. W.; Kim, H.; Hwang, G. T.; Cho, S. B.; Jeon, S. H.; Kim, H. W.; Jeong, C. K.; Chun, S.; Pang, C. Conformably skin-adherent piezoelectric patch with bioinspired hierarchically arrayed microsuckers enables physical energy amplification. ACS Energy Lett. 2022, 7, 1820–1827.

[84]

Zhao, Y. S.; Lo, C. Y.; Ruan, L. C.; Pi, C. H.; Kim, C.; Alsaid, Y.; Frenkel, I.; Rico, R.; Tsao, T. C.; He, X. M. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 2021, 6, eabd5483.

[85]

Lin, B.; Giurgiutiu, V.; Pollock, P.; Xu, B. L.; Doane, J. Durability and survivability of piezoelectric wafer active sensors on metallic structure. AIAA J. 2010, 48, 635–643.

[86]

Sedlak, P.; Majzner, J.; Sikula, J. Mathematical model for electrical noise of piezoelectric sensor. AIP Conf. Proc. 2007, 922, 335–338.

[87]

Rathod, V. T. A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electronics 2019, 8, 169.

[88]

Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

[89]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[90]

Zhang, N. N.; Tao, C. Y.; Fan, X.; Chen, J. Progress in triboelectric nanogenerators as self-powered smart sensors. J. Mater. Res. 2017, 32, 1628–1646.

[91]

Jin, L.; Chen, J.; Zhang, B. B.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Huang, X.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874–7881.

[92]

Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic−triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

[93]

Elsanadidy, E.; Mosa, I. M.; Luo, D.; Xiao, X.; Chen, J.; Wang, Z. L.; Rusling, J. F. Advances in triboelectric nanogenerators for self-powered neuromodulation. Adv. Funct. Mater. 2023, 33, 2211177.

[94]

Peng, Z. H.; Shi, J. H.; Xiao, X.; Hong, Y.; Li, X. M.; Zhang, W. W.; Cheng, Y. L.; Wang, Z. K.; Li, W. J.; Chen, J. et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835.

[95]

Xiao, X.; Chen, G. B.; Libanori, A.; Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 2021, 3, 279–290.

[96]

Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5871–5879.

[97]

Chen, J.; Zhu, G.; Yang, J.; Jing, Q. S.; Bai, P.; Yang, W. Q.; Qi, X. W.; Su, Y. J.; Wang, Z. L. Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 2015, 9, 105–116.

[98]

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

[99]

Liu, B. H.; Libanori, A.; Zhou, Y. H.; Xiao, X.; Xie, G. Z.; Zhao, X.; Su, Y. J.; Wang, S.; Yuan, Z.; Duan, Z. H. et al. Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl. Mater. Interfaces 2022, 14, 7301–7310.

[100]

Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Triboelectric nanogenerators for self-powered breath monitoring. ACS Appl. Energy Mater. 2022, 5, 3952–3965.

[101]

Zhou, Z. H.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z. M.; Ge, L. J.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126–14133.

[102]

Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

[103]

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

[104]

Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

[105]

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

[106]

Peng, Z. H.; Xiao, X.; Song, J. X.; Libanori, A.; Lee, C.; Chen, K. D.; Gao, Y.; Fang, Y. S.; Wang, J.; Wang, Z. K. et al. Improving relative permittivity and suppressing dielectric loss of triboelectric layers for high-performance wearable electricity generation. ACS Nano 2022, 16, 20251–20262.

[107]

Alagumalai, A.; Mahian, O.; Vimal, K. E. K.; Yang, L.; Xiao, X.; Saeidi, S.; Zhang, P.; Saboori, T.; Wongwises, S.; Wang, Z. L. et al. A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy 2022, 101, 107572.

[108]

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

[109]

Huang, C. X.; Chen, G. R.; Nashalian, A.; Chen, J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021, 13, 2065–2081.

[110]

Yao, G.; Xu, L.; Cheng, X. W.; Li, Y. Y.; Huang, X.; Guo, W.; Liu, S. Y.; Wang, Z. L.; Wu, H. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv. Funct. Mater. 2020, 30, 1907312.

[111]

Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D. Q.; Peng, X.; Yi, J.; Ning, C.; Cheng, R. W.; Yu, P. T. et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 2021, 31, 2005584.

[112]

Maharjan, P.; Bhatta, T.; Salauddin, M.; Rasel, M. S.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 2020, 76, 105071.

[113]

Zhou, H.; Li, D. X.; He, X. M.; Hui, X. D.; Guo, H. Y.; Hu, C. G.; Mu, X. J.; Wang, Z. L. Bionic ultra-sensitive self-powered electromechanical sensor for muscle-triggered communication application. Adv. Sci. 2021, 8, 2101020.

[114]

Xu, Q. H.; Fang, Y. S.; Jing, Q. S.; Hu, N.; Lin, K.; Pan, Y. F.; Xu, L.; Gao, H. Q.; Yuan, M.; Chu, L. et al. A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron. 2021, 187, 113329.

[115]

Peng, Z. H.; Song, J.; Gao, Y.; Liu, J.; Lee, C.; Chen, G. R.; Wang, Z. K.; Chen, J.; Leung, M. K. H. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy 2021, 85, 106021.

[116]

Zou, Y. J.; Xu, J.; Fang, Y. S.; Zhao, X.; Zhou, Y. H.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845.

[117]

Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

[118]

Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

[119]

Zi, Y. L.; Basset, P.; Chen, J. Triboelectric nanogenerator—Progress and perspectives. EcoMat 2021, 3, e12129.

[120]

Conta, G.; Libanori, A.; Tat, T.; Chen, G. R.; Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 2021, 33, 2007502.

[121]

Li, X. Y.; Tat, T.; Chen, J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021, 3, 765–778.

[122]

Zou, Y. J.; Xu, J.; Chen, K.; Chen, J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916.

[123]

Libanori, A.; Soto, J.; Xu, J.; Song, Y.; Zarubova, J.; Tat, T.; Xiao, X.; Yue, S. Z.; Jonas, S. J.; Li, S. et al. Self-powered programming of fibroblasts into neurons via a scalable magnetoelastic generator array. Adv. Mater. 2023, 35, 2206933.

[124]

Yin, J. ; Wang, S. ; Carlo, A. D.; Chang, A.; Wan, X.; Xu, J.; Xiao, X.; Chen, J. Smart textiles for self-powered biomonitoring. Med-X 2023, 1, 3.

[125]

Ock, I. W.; Zhao, X.; Tat, T.; Xu, J.; Chen, J. Harvesting hydropower via a magnetoelastic generator for sustainable water splitting. ACS Nano 2022, 16, 16816–16823.

[126]

Ock, I. W.; Zhao, X.; Wan, X.; Zhou, Y. H.; Chen, G. R.; Chen, J. Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy 2023, 109, 108298.

[127]

Xu, J.; Tat, T.; Yin, J.; Ngo, D.; Zhao, X.; Wan, X.; Che, Z.; Chen, K.; Harris, L.; Chen, J. A textile magnetoelastic patch for self-powered personalized muscle physiotherapy. Matter 2023, 6, 1–13.

[128]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[129]

Che, Z. Y.; O’Donovan, S.; Xiao, X.; Wan, X.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, J. Implantable triboelectric nanogenerators for self-powered cardiovascular healthcare. Small 2023, 19, 2207600.

[130]

Abiri, P.; Luo, Y.; Huang, Z. Y.; Cui, Q. Y.; Duarte-Vogel, S.; Roustaei, M.; Chang, C. C.; Xiao, X.; Packard, R.; Cavallero, S. et al. 3-Dimensional electrical impedance spectroscopy for in situ endoluminal mapping of metabolically active plaques. Sens. Actuators B Chem 2022, 354, 131152.

[131]

Xiao, X.; Xiao, X.; Nashalian, A.; Libanori, A.; Fang, Y. S.; Li, X. Y.; Chen, J. Triboelectric nanogenerators for self-powered wound healing. Adv. Healthc. Mater. 2021, 10, 2100975.

[132]

Yang, M.; Au, C.; Deng, G. W.; Mathur, S.; Huang, Q. P.; Luo, X. L.; Xie, G. Z.; Tai, H. L.; Jiang, Y. D.; Chen, C. X. et al. NiWO4 microflowers on multi-walled carbon nanotubes for high-performance NH3 detection. ACS Appl. Mater. Interfaces 2021, 13, 52850–52860.

[133]

Li, J. H.; Jiao, L.; Xiao, X.; Nashalian, A.; Mathur, S.; Zhu, Z. J.; Wu, W. T.; Guo, W. W.; Zhai, Y. L.; Lu, X. Q. et al. Flexible Prussian blue-Au fibers as robust peroxidase-like nanozymes for wearable hydrogen peroxide and uric acid monitoring. Electroanalysis 2022, 34, 1763–1771.

[134]

Zhai, Y. L.; Li, J. H.; Shen, S.; Zhu, Z. J.; Mao, S.; Xiao, X.; Zhu, C. Z.; Tang, J. G.; Lu, X. Q.; Chen, J. Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 2022, 32, 2109848.

[135]

Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781–2800.

[136]

Stetter, J. R.; Penrose, W. R.; Yao, S. Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 2003, 150, S11–S16.

[137]

Xu, J.; Fang, Y. S.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors 2021, 11, 245.

[138]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[139]

Kashyap, V.; Arora, B. B.; Bhattacharjee, S. A computational study of branch-wise curvature in idealized coronary artery bifurcations. Appl. Eng. Sci. 2020, 4, 100027.

[140]

Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707.

[141]

Hu, Y.; Qi, K.; Chang, L. F.; Liu, J. Q.; Yang, L. L.; Huang, M. J.; Wu, G.; Lu, P.; Chen, W.; Wu, Y. C. A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. J. Mater. Chem. C 2019, 7, 6879–6888.

[142]

Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.

[143]

He, X. C.; Yang, S. J.; Pei, Q. B.; Song, Y. C.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 2020, 5, 1548–1554.

[144]

Shin, S. H.; Bae, Y. E.; Moon, H. K.; Kim, J.; Choi, S. H.; Kim, Y.; Yoon, H. J.; Lee, M. H.; Nah, J. Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 2017, 11, 6131–6138.

[145]

Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.

[146]

Ji, X. L.; Zhao, T. K.; Zhao, X.; Lu, X. F.; Li, T. H. Triboelectric nanogenerator based smart electronics via machine learning. Adv. Mater. Technol. 2020, 5, 1900921.

[147]

Xu, J. H.; Cai, H. W.; Wu, Z. H.; Li, X.; Tian, C. H.; Ao, Z.; Niu, V. C.; Xiao, X.; Jiang, L.; Khodoun, M. et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 2023, 14, 869.

[148]

Weston, M. Wearable surveillance-a step too far. Strategic HR Rev. 2015, 14, 214–219.

[149]

Mahmud, M. A. P.; Tat, T.; Xiao, X.; Adhikary, P.; Chen, J. Advances in 4D-printed physiological monitoring sensors. Exploration 2021, 1, 20210033.

[150]

Li, X. B.; Xiao, X.; Bai, C. H.; Mayer, M.; Cui, X. J.; Lin, K.; Li, Y. H.; Zhang, H. L.; Chen, J. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J. Mater. Chem. C 2022, 10, 13789–13796.

[151]

Deng, W. L.; Libanori, A.; Xiao, X.; Fang, J.; Zhao, X.; Zhou, Y. H.; Chen, G. R.; Li, S.; Chen, J. Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 2022, 91, 106656.

[152]

Xiao, X.; Yin, J. Y.; Shen, S.; Che, Z. Y.; Wan, X.; Wang, S. L.; Chen, J. Advances in solid-state fiber batteries for wearable bioelectronics. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101042.

[153]

Chu, X.; Zhao, X.; Zhou, Y. H.; Wang, Y. H.; Han, X. L.; Zhou, Y. L.; Ma, J. X.; Wang, Z. X.; Huang, H. C.; Xu, Z. et al. An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy 2020, 76, 105179.

[154]

Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260–1269.

[155]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[156]

Chu, X.; Chen, G. R.; Xiao, X.; Wang, Z. X.; Yang, T.; Xu, Z.; Huang, H. C.; Wang, Y. H.; Yan, C.; Chen, N. J. et al. Air-stable conductive polymer ink for printed wearable micro-supercapacitors. Small 2021, 17, 2100956.

[157]

Xiao, X.; Xiao, X.; Zhou, Y. H.; Zhao, X.; Chen, G. R.; Liu, Z. X.; Wang, Z. H.; Lu, C. Y.; Hu, M. L.; Nashalian, A. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742.

[158]

Shen, S.; Xiao, X.; Yin, J. Y.; Xiao, X.; Chen, J. Self-powered smart gloves based on triboelectric nanogenerators. Small Methods 2022, 6, 2200830.

[159]

Guo, R.; Fang, Y. S.; Wang, Z. S.; Libanori, A.; Xiao, X.; Wan, D.; Cui, X. J.; Sang, S. B.; Zhang, W. D.; Zhang, H. L. et al. Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 2022, 32, 2204803.

[160]

Luo, Y.; Xiao, X.; Chen, J.; Li, Q.; Fu, H. Y. Machine-learning-assisted recognition on bioinspired soft sensor arrays. ACS Nano 2022, 16, 6734–6743.

[161]

Fang, Y. S.; Xu, J.; Xiao, X.; Zou, Y. J.; Zhao, X.; Zhou, Y. H.; Chen, J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. 2022, 34, 2200252.

[162]

Xiao, X.; Fang, Y. S.; Xiao, X.; Xu, J.; Chen, J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 2021, 15, 18633–18646.

[163]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[164]

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

[165]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[166]

Ma, H. D.; Qin, H. Y.; Xiao, X.; Liu, N.; Wang, S. L.; Li, J. Y.; Shen, S.; Dai, S. Q.; Sun, M. M.; Li, P. Y. et al. Robust hydrogel sensors for unsupervised learning enabled sign-to-verbal translation. InfoMat 2023, 5, e12419.

[167]

Wang, M; Yang, Y; Min, J; Song, Y; Tu, J; Mukasa, D; Gao; W. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed. Eng. 2022, 6, 1225–1235.

[168]

Chiu, C. M; Chen, S. W; Pao, Y. P; Huang, M. Z; Chan, S. W; Lin, Z. H. A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression. Sci Tech Adv Mater 2019, 20, 964–971.

[169]

Li, Y.; Yin, J. Y.; Liu, S. Y.; Xue, B.; Shokoohi, C.; Ge, G.; Hu, M. L.; Li, T. H.; Tao, X.; Rao, Z.; Meng, F. Y.; Shi, H. F.; Ji, X. Q.; Servati, P.; Xiao, X.; Chen, J. Learning hand kinematics for parkinson’s disease assessment using a multimodal sensor glove. Adv. Sci. 2023, 10, 2206982.

[170]

Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; Burghardt, F.; Benini, L.; Arias, A. C.; Rabaey, J. M. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

[171]

Kim, K. K.; Kim, M.; Pyun, K.; Kim, J.; Min, J.; Koh, S.; Root, S. E.; Kim, J.; Nguyen, B.-N. T.; Nishio, Y.; Han, S.; Choi, J.; Kim, C.-Y.; Tok, J. B.-H.; Jo, S.; Ko, S. H.; Bao, Z. A Substrate-Less Nanomesh Receptor with Meta-Learning for Rapid Hand Task Recognition. Nat. Electron. 2023, 6, 64–75.

[172]

Araromi, O. A.; Graule, M. A.; Dorsey, K. L.; Castellanos, S.; Foster, J. R.; Hsu, W.-H.; Passy, A. E.; Vlassak, J. J.; Weaver, J. C.; Walsh, C. J.; Wood, R. J. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224.

[173]

Wang, M.; Yan, Z.; Wang, T.; Cai, P. Q.; Gao, S. Y.; Zeng, Y.; Wan, C. J.; Wang, H.; Pan, L.; Yu, J. C.; Pan, S. W.; He, K.; Lu, J.; Chen, X. D. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570.

[174]

Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

[175]

Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

[176]

Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. Printed soft human−machine interface for robotic physicochemical sensing. Sci Robotics 2022, 7, eabn0495.

[177]
Xiao, X.; Yin, J. Y.; Chen, J. Triboelectric nanogenerator for healthcare. In Handbook of Triboelectric Nanogenerators. Wang, Z. L., Yang, Y., Zhai, J., Wang, J., Eds.; Springer: Cham, 2023; pp 1–50.
DOI
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 February 2023
Revised: 30 March 2023
Accepted: 09 April 2023
Published: 26 July 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This is an invited review article for the Young Innovator Award in Nano Research. The authors acknowledge the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles for the startup support. J. C. also acknowledges the Hellman Fellows Research Grant, the UCLA Pandemic Resources Program Research Award, the Research Recovery Grant by the UCLA Academic Senate, and the Brain & Behavior Research Foundation Young Investigator Grant (Grant Number: 30944), and the Catalyzing Pediatric Innovation Grant (Grant Number: 47744) from the West Coast Consortium for Technology & Innovation in Pediatrics, Children’s Hospital Los Angeles.

Return