Journal Home > Volume 16 , Issue 9

Fiber organic electrochemical transistors (OECTs) have received extensive attention in wearable and implantable biosensors because of their high flexibility and low working voltage. However, the transconductance of fiber OECTs is much lower compared with the planar counterparts, leading to low sensitivity. Here, we developed fiber OECTs in a coaxial configuration with microscale channel length to achieve the highest transconductance of 135 mS, which is one to two orders of magnitude higher than that of the state-of-the-art fiber OECTs. Coaxial fiber OECT based sensors showed high sensitivities of 12.78, 20.53 and 3.78 mA/decade to ascorbic acid, hydrogen peroxide and glucose, respectively. These fiber OECTs were woven into a fabric to monitor the glucose in sweat during exercise and implanted in mouse brain to detect ascorbic acid. This coaxial architectural design offers an effective way to promote the performance of fiber OECTs and realize highly sensitive detection of biochemicals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coaxial fiber organic electrochemical transistor with high transconductance

Show Author's information Yuan FangJianyou FengXiang ShiYiqing YangJiajia WangXiao SunWenjun LiXuemei Sun( )Huisheng Peng( )
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China

Abstract

Fiber organic electrochemical transistors (OECTs) have received extensive attention in wearable and implantable biosensors because of their high flexibility and low working voltage. However, the transconductance of fiber OECTs is much lower compared with the planar counterparts, leading to low sensitivity. Here, we developed fiber OECTs in a coaxial configuration with microscale channel length to achieve the highest transconductance of 135 mS, which is one to two orders of magnitude higher than that of the state-of-the-art fiber OECTs. Coaxial fiber OECT based sensors showed high sensitivities of 12.78, 20.53 and 3.78 mA/decade to ascorbic acid, hydrogen peroxide and glucose, respectively. These fiber OECTs were woven into a fabric to monitor the glucose in sweat during exercise and implanted in mouse brain to detect ascorbic acid. This coaxial architectural design offers an effective way to promote the performance of fiber OECTs and realize highly sensitive detection of biochemicals.

Keywords: fiber, hydrogen peroxide, glucose, coaxial structure, ascorbic acid, organic electrochemical transistor

References(62)

[1]

Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.

[2]

Yoon, J. H.; Kim, S. M.; Park, H. J.; Kim, Y. K.; Oh, D. X.; Cho, H. W.; Lee, K. G.; Hwang, S. Y.; Park, J.; Choi, B. G. Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens. Bioelectron. 2020, 150, 111946.

[3]

Wang, L. Y.; Xie, S. L.; Wang, Z. Y.; Liu, F.; Yang, Y. F.; Tang, C. Q.; Wu, X. Y.; Liu, P.; Li, Y. J.; Saiyin, H. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171.

[4]

Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.

[5]

Yang, A. N.; Li, Y. Z.; Yang, C. X.; Fu, Y.; Wang, N. X.; Li, L.; Yan, F. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 2018, 30, 1800051.

[6]

Kim, Y.; Lim, T.; Kim, C. H.; Yeo, C. S.; Seo, K.; Kim, S. M.; Kim, J.; Park, S. Y.; Ju, S.; Yoon, M. H. Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Mater. 2018, 10, 1086–1095.

[7]

Zhang, Y.; Wang, Y. D.; Qing, X.; Wang, Y.; Zhong, W. B.; Wang, W. W.; Chen, Y. L.; Liu, Q. Z.; Li, M. F.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524.

[8]

Wang, Y. D.; Zhou, Z.; Qing, X.; Zhong, W. B.; Liu, Q. Z.; Wang, W. W.; Li, M. F.; Liu, K.; Wang, D. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 2016, 408, 5779–5787.

[9]

Wang, Y. D.; Qing, X.; Zhou, Q.; Zhang, Y.; Liu, Q. Z.; Liu, K.; Wang, W. W.; Li, M. F.; Lu, Z. T.; Chen, Y. L. et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 2017, 95, 138–145.

[10]

Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras, D. A.; Khodagholy, D.; Ramuz, M.; Strakosas, X.; Owens, R. M. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251.

[11]

Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

[12]

Liang, Y. Y.; Brings, F.; Maybeck, V.; Ingebrandt, S.; Wolfrum, B.; Pich, A.; Offenhäusser, A.; Mayer, D. Tuning channel architecture of interdigitated organic electrochemical transistors for recording the action potentials of electrogenic cells. Adv. Funct. Mater. 2019, 29, 1902085.

[13]

Wu, X. Y.; Feng, J. Y.; Deng, J.; Cui, Z. C.; Wang, L. Y.; Xie, S. L.; Chen, C. R.; Tang, C. Q.; Han, Z. Q.; Yu, H. B. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 2020, 63, 1281–1288.

[14]

Yang, Y. X.; Wei, X. F.; Zhang, N. N.; Zheng, J. J.; Chen, X.; Wen, Q.; Luo, X. X.; Lee, C. Y.; Liu, X. H.; Zhang, X. C. et al. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 2021, 12, 4876.

[15]

Cicoira, F.; Sessolo, M.; Yaghmazadeh, O.; DeFranco, J. A.; Yang, S. Y.; Malliaras, G. G. Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 2010, 22, 1012–1016.

[16]

Lu, W. B.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833.

[17]

Kumar, A.; Pujar, R.; Gupta, N.; Tarafdar, S.; Kulkarni, G. U. Stress modulation in desiccating crack networks for producing effective templates for patterning metal network based transparent conductors. Appl. Phys. Lett. 2017, 111, 013502.

[18]

Routh, A. F. Drying of thin colloidal films. Rep. Prog. Phys. 2013, 76, 046603.

[19]

Rao, K. D. M.; Gupta, R.; Kulkarni, G. U. Fabrication of large area, high-performance, transparent conducting electrodes using a spontaneously formed crackle network as template. Adv. Mater. Interfaces 2014, 1, 1400090.

[20]

Kim, Y. G.; Tak, Y. J.; Park, S. P.; Kim, H. J.; Kim, H. J. Structural engineering of metal-mesh structure applicable for transparent electrodes fabricated by self-formable cracked template. Nanomaterials 2017, 7, 214.

[21]

Tao, Y.; Wang, Y.; Zhu, R. F.; Chen, Y. L.; Liu, X.; Li, M. F.; Yang, L. Y.; Wang, Y. D.; Wang, D. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta 2022, 238, 123055.

[22]

Xi, X.; Wu, D. Q.; Ji, W.; Zhang, S. N.; Tang, W.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes. Adv. Funct. Mater. 2020, 30, 1905361.

[23]

Bernards, D. A.; Macaya, D. J.; Nikolou, M.; DeFranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120.

[24]

Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 2019, 11, 2412.

[25]

Tolosa, V. M.; Wassum, K. M.; Maidment, N. T.; Monbouquette, H. G. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode arraymicroprobe. Biosens. Bioelectron. 2013, 42, 256–260.

[26]

Demuru, S.; Huang, C. H.; Parvez, K.; Worsley, R.; Mattana, G.; Piro, B.; Noël, V.; Casiraghi, C.; Briand, D. All-inkjet-printed graphene-gated organic electrochemical transistors on polymeric foil as highly sensitive enzymatic biosensors. ACS Appl. Nano Mater. 2022, 5, 1664–1673.

[27]

Ohayon, D.; Nikiforidis, G.; Savva, A.; Giugni, A.; Wustoni, S.; Palanisamy, T.; Chen, X. X.; Maria, I. P.; Di Fabrizio, E.; Costa, P. M. F. J. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 2020, 19, 456–463.

[28]

Chen, C.; Xie, Q. J.; Yang, D. W.; Xiao, H. L.; Fu, Y. C.; Tan, Y. M.; Yao, S. Z. Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 2013, 3, 4473–4491.

[29]

Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G. M. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 2022, 22, 638.

[30]

Ait Yazza, A.; Blondeau, P.; Andrade, F. J. Simple approach for building high transconductance paper-based organic electrochemical transistor (OECT) for chemical sensing. ACS Appl. Electron. Mater. 2021, 3, 1886–1895.

[31]

Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015, 9, 031301.

[32]

Zhao, J. Q.; Lin, Y. J.; Wu, J. B.; Nyein, H. Y. Y.; Bariya, M.; Tai, L. C.; Chao, M. H.; Ji, W. B.; Zhang, G.; Fan, Z. Y. et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 2019, 4, 1925–1933.

[33]

Tang, C. Q.; Xie, S. L.; Wang, M. Y.; Feng, J. Y.; Han, Z. Q.; Wu, X. Y.; Wang, L. Y.; Chen, C. R.; Wang, J. J.; Jiang, L. P. et al. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces. J. Mater. Chem. B 2020, 8, 4387–4394.

[34]

Janzakova, K.; Ghazal, M.; Kumar, A.; Coffinier, Y.; Pecqueur, S.; Alibart, F. Dendritic organic electrochemical transistors grown by electropolymerization for 3D neuromorphic engineering. Adv. Sci. 2021, 8, 2102973.

[35]

Fang, B.; Yan, J. M.; Chang, D.; Piao, J.; Ma, K. M.; Gu, Q.; Gao, P.; Chai, Y.; Tao, X. M. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat. Commun. 2022, 13, 2101.

[36]

Zhang, L. S.; Andrew, T. Vapor-coated monofilament fibers for embroidered electrochemical transistor arrays on fabrics. Adv. Electron. Mater. 2018, 4, 1800271.

[37]

Sarabia-Riquelme, R.; Andrews, R.; Anthony, J. E.; Weisenberger, M. C. Highly conductive wet-spun PEDOT: PSS fibers for applications in electronic textiles. J. Mater. Chem. C 2020, 8, 11618–11630.

[38]

Hofmann, A. I.; Östergren, I.; Kim, Y.; Fauth, S.; Craighero, M.; Yoon, M. H.; Lund, A.; Müller, C. All-polymer conducting fibers and 3D prints via melt processing and templated polymerization. ACS Appl. Mater. Interfaces 2020, 12, 8713–8721.

[39]

Shi, Z. N.; Xu, Z.; Hu, J.; Wei, W. W.; Zeng, X. R.; Zhao, W. W.; Lin, P. Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosens. Bioelectron. 2022, 201, 113958.

[40]

Tang, K.; Turner, C.; Case, L.; Mehrehjedy, A.; He, X. Y.; Miao, W. J.; Guo, S. Organic electrochemical transistor with molecularly imprinted polymer-modified gate for the real-time selective detection of dopamine. ACS Appl. Polym. Mater. 2022, 4, 2337–2345.

[41]

Zhang, M.; Liao, C. Z.; Yao, Y. L.; Liu, Z. K.; Gong, F. F.; Yan, F. High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv. Funct. Mater. 2014, 24, 978–985.

[42]

Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J. Mater. Chem. B 2014, 2, 191–200.

[43]

Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 2016, 6, 33637.

[44]

Zhang, L. J.; Wang, G. H.; Wu, D.; Xiong, C.; Zheng, L.; Ding, Y. S.; Lu, H. B.; Zhang, G. B.; Qiu, L. Z. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosens. Bioelectron. 2018, 100, 235–241.

[45]

Gualandi, I.; Scavetta, E.; Mariani, F.; Tonelli, D.; Tessarolo, M.; Fraboni, B. All poly(3, 4-ethylenedioxythiophene) organic electrochemical transistor to amplify amperometric signals. Electrochim. Acta 2018, 268, 476–483.

[46]

Wang, L.; Sun, Q. Z.; Zhang, L. R.; Wang, J.; Ren, G. Z.; Yu, L. Y. Z.; Wang, K. L.; Zhu, Y. M.; Lu, G.; Yu, H. D. Realizing ultrahigh transconductance in organic electrochemical transistor by Co-doping PEDOT: PSS with ionic liquid and dodecylbenzenesulfonate. Macromol. Rapid Commun. 2022, 43, 2200212.

[47]

Tan, S. T. M.; Giovannitti, A.; Melianas, A.; Moser, M.; Cotts, B. L.; Singh, D.; McCulloch, I.; Salleo, A. High-gain chemically gated organic electrochemical transistor. Adv. Funct. Mater. 2021, 31, 2010868.

[48]

Liao, C. Z.; Mak, C.; Zhang, M.; Chan, H. L. W.; Yan, F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 2015, 27, 676–681.

[49]

Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.

[50]

Guo, X.; Cao, Q. Q.; Liu, Y. W.; He, T.; Liu, J. W.; Huang, S.; Tang, H.; Ma, M. Organic electrochemical transistor for in situ detection of H2O2 released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal. Chem. 2020, 92, 908–915.

[51]

Strakosas, X.; Donahue, M. J.; Hama, A.; Braendlein, M.; Huerta, M.; Simon, D. T.; Berggren, M.; Malliaras, G. G.; Owens, R. M. Biostack: Nontoxic metabolite detection from live tissue. Adv. Sci. 2022, 9, 2101711.

[52]

Fan, J. X.; Forero Pico, A. A.; Gupta, M. A functionalization study of aerosol jet printed organic electrochemical transistors (OECTs) for glucose detection. Mater. Adv. 2021, 2, 7445–7455.

[53]

Lin, B. J.; Wang, M.; Zhao, C.; Wang, S. J.; Chen, K.; Li, X.; Long, Z. S.; Zhao, C. X.; Song, X. Y.; Yan, S. et al. Flexible organic integrated electronics for self-powered multiplexed ocular monitoring. npj Flex. Electron. 2022, 6, 77.

[54]

Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295–2302.

[55]

Strakosas, X.; Huerta, M.; Donahue, M. J.; Hama, A.; Pappa, A. M.; Ferro, M.; Ramuz, M.; Rivnay, J.; Owens, R. M. Catalytically enhanced organic transistors for in vitro toxicology monitoring through hydrogel entrapment of enzymes. J. Appl. Polym. Sci. 2017, 134, 44483.

[56]

Wustoni, S.; Savva, A.; Sun, R. F.; Bihar, E.; Inal, S. Enzyme-free detection of glucose with a hybrid conductive gel electrode. Adv. Mater. Interfaces 2019, 6, 1800928.

[57]

Gualandi, I.; Tessarolo, M.; Mariani, F.; Arcangeli, D.; Possanzini, L.; Tonelli, D.; Fraboni, B.; Scavetta, E. Layered double hydroxide-modified organic electrochemical transistor for glucose and lactate biosensing. Sensors 2020, 20, 3453.

[58]

Diacci, C.; Abedi, T.; Lee, J. W.; Gabrielsson, E. O.; Berggren, M.; Simon, D. T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021, 24, 101966.

[59]

Meza, B. E.; Peralta, J. M.; Zorrilla, S. E. Rheological properties of a commercial food glaze material and their effect on the film thickness obtained by dip coating. J. Food Process Eng. 2015, 38, 510–516.

[60]

Sapcharoenkun, C.; Klamchuen, A.; Kasamechonchung, P.; Iemsam-Arng, J. Role of rheological behavior of sunscreens containing nanoparticles on thin film preparation. Mater. Sci. Eng. :B 2020, 259, 114608.

[61]

Ferro, L. M. M.; Merces, L.; de Camargo, D. H. S.; Bof Bufon, C. C. Ultrahigh-gain organic electrochemical transistor chemosensors based on self-curled nanomembranes. Adv. Mater. 2021, 33, 2101518.

[62]

Bai, L. M.; Elósegui, C. G.; Li, W. Q.; Yu, P.; Fei, J. J.; Mao, L. Q. Biological applications of organic electrochemical transistors: Electrochemical biosensors and electrophysiology recording. Front. Chem. 2019, 7, 313.

File
12274_2023_5722_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2023
Revised: 14 March 2023
Accepted: 09 April 2023
Published: 29 April 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 52122310 and 22075050), Science and Technology Commission of Shanghai Municipality (STCSM, Nos. 21511104900 and 20JC1414902), China Postdoctoral Science Foundation (CPSF, Nos. VLH1717003, KLH1717015), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology.

Return