Journal Home > Volume 16 , Issue 12

Developing dedicated nanomedicines to improve delivery efficacy of anti-inflammatory drugs is still a formidable challenge. In this study, we present an extremely simple yet efficient approach to obtain hybrid nanodrugs through metal-drug coordination-driven self-assembly for carrier-free drug delivery. The resulting metallo-nanodrugs exhibit well-defined morphology and high drug encapsulation capability, allowing for the combination of magnetic resonance imaging and anti-inflammatory therapy. In the case of osteoarthritis (OA), the metallo-nanodrugs remarkably alleviate synovial inflammation, preventing cartilage destruction and extracellular matrix loss. In addition, it led to significantly improved therapeutic efficacy compared with intra-articular administration of the same dose of free drugs in OA mouse model. This work provides a very simple approach for the development of anti-inflammatory nanoformulations by exploiting coordination-driven self-assembly.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coordination-driven self-assembly of metallo-nanodrugs for local inflammation alleviation

Show Author's information Lijuan Tang1,2,3,§Zhenghan Di3,§Jingfang Zhang3Feiying Yin1Lele Li3( )Li Zheng1( )
Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development nd Application Co-Constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China

§ Lijuan Tang and Zhenghan Di contributed equally to this work.

Abstract

Developing dedicated nanomedicines to improve delivery efficacy of anti-inflammatory drugs is still a formidable challenge. In this study, we present an extremely simple yet efficient approach to obtain hybrid nanodrugs through metal-drug coordination-driven self-assembly for carrier-free drug delivery. The resulting metallo-nanodrugs exhibit well-defined morphology and high drug encapsulation capability, allowing for the combination of magnetic resonance imaging and anti-inflammatory therapy. In the case of osteoarthritis (OA), the metallo-nanodrugs remarkably alleviate synovial inflammation, preventing cartilage destruction and extracellular matrix loss. In addition, it led to significantly improved therapeutic efficacy compared with intra-articular administration of the same dose of free drugs in OA mouse model. This work provides a very simple approach for the development of anti-inflammatory nanoformulations by exploiting coordination-driven self-assembly.

Keywords: drug delivery, nanomedicine, coordination-driven assembly, anti-inflammation therapy

References(49)

[1]

Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.

[2]

Wieland, H. A.; Michaelis, M.; Kirschbaum, B. J.; Rudolphi, K. A. Osteoarthritis-an untreatable disease. Nat. Rev. Drug Discov. 2005, 4, 331–344.

[3]

Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.

[4]

Liu-Bryan, R.; Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44.

[5]

McAlindon, T. E.; LaValley, M. P.; Harvey, W. F.; Price, L. L.; Driban, J. B.; Zhang, M.; Ward, R. J. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA 2017, 317, 1967–1975.

[6]

Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.

[7]

Larsen, C.; Østergaard, J.; Larsen, S. W.; Jensen, H.; Jacobsen, S.; Lindegaard, C.; Andersen, P. H. Intra-articular depot formulation principles: Role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 2008, 97, 4622–4654.

[8]

Rosen, H.; Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005, 4, 381–385.

[9]

Williams, R. M.; Chen, S.; Langenbacher, R. E.; Galassi, T. V.; Harvey, J. D.; Jena, P. V.; Budhathoki-Uprety, J.; Luo, M. K.; Heller, D. A. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Biol. 2021, 17, 129–137.

[10]

Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51, 2047–2063.

[11]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

[12]

Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 2014, 26, 310–322.

[13]

Liu, M. J.; Ren, X. L.; Meng, X. W.; Li, H. B. Metal–organic frameworks-based fluorescent nanocomposites for bioimaging in living cells and in vivo. Chin. J. Chem. 2021, 39, 473–487.

[14]

He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

[15]

Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res. 2022, 15, 71–84.

[16]

Zhang, Z.; Li, B.; Xie, L. S.; Sang, W.; Tian, H.; Li, J.; Wang, G. H.; Dai, Y. L. Metal–phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano 2021, 15, 16934–16945.

[17]

Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010, 46, 4737–4739.

[18]

Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

[19]

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal–organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

[20]

Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.

[21]

Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

[22]

Wang, P.; Zhou, F.; Yin, X.; Xie, Q. J.; Song, G. S.; Zhang, X. B. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res. 2022, 15, 9264–9273.

[23]

Ma, Y.; Li, X. Y.; Li, A. J.; Yang, P.; Zhang, C. Y.; Tang, B. H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem., Int. Ed. 2017, 56, 13752–13756.

[24]

Zhang, P. F.; Wang, J. Q.; Chen, H.; Zhao, L.; Chen, B. B.; Chu, C. C.; Liu, H.; Qin, Z. N.; Liu, J. Y.; Tan, Y. Z. et al. Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration. J. Am. Chem. Soc. 2018, 140, 14980–14989.

[25]
Hu, J. L.; Jiang, Q. Y.; Shi, T. H.; Lin, X.; Zhao, Y.; Wang, X. Y.; Liu, X. Q. In situ generated and amplified oxidative stress with metallo-nanodrug assembly for metastatic cancer therapy with high specificity and efficacy. Adv. Therap. 2021, 4, 2100148.
[26]

Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

[27]

Cheng, K.; Liu, B.; Zhang, X. S.; Zhang, R. Y.; Zhang, F.; Ashraf, G.; Fan, G. Q.; Tian, M. Y.; Sun, X.; Yuan, J. et al. Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia. Nat. Commun. 2022, 13, 4567.

[28]

Luo, Z. C.; Liang, X. Q.; He, T.; Qin, X.; Li, X. C.; Li, Y. S.; Li, L.; Loh, X. J.; Gong, C. Y.; Liu, X. G. Lanthanide-nucleotide coordination nanoparticles for STING activation. J. Am. Chem. Soc. 2022, 144, 16366–16377.

[29]

Zhou, H. S.; Wang, Y. Y.; Hou, Y. Q.; Zhang, Z. K.; Wang, Q.; Tian, X. D.; Lu, H. Co-delivery of Cisplatin and chlorin e6 by poly(phosphotyrosine) for synergistic chemotherapy and photodynamic therapy. Chin. J. Chem. 2022, 40, 2428–2436.

[30]

Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.

[31]

Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed. 2019, 58, 8804–8808.

[32]

Liu, C. Z.; Chen, Y. X.; Zhao, J.; Wang, Y.; Shao, Y. L.; Gu, Z. J.; Li, L. L.; Zhao, Y. L. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 14324–14328.

[33]

Zou, Z.; He, L. B.; Deng, X. X.; Wang, H. X.; Huang, Z. Y.; Xue, Q.; Qing, Z. H.; Lei, Y. L.; Yang, R. H.; Liu, J. W. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions. Angew. Chem., Int. Ed. 2021, 60, 22970–22976.

[34]

Dubashynskaya, N. V.; Bokatyi, A. N.; Skorik, Y. A. Dexamethasone conjugates: Synthetic approaches and medical prospects. Biomedicines 2021, 9, 341.

[35]

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

[36]

Pan, Q.; Xu, Q. G.; Boylan, N. J.; Lamb, N. W.; Emmert, D. G.; Yang, J. C.; Tang, L.; Heflin, T.; Alwadani, S.; Eberhart, C. G. et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J. Control. Release 2015, 201, 32–40.

[37]
Muhammad, W.; Zhu, J. Q.; Zhai, Z. H.; Xie, J. Q.; Zhou, J. H.; Feng, X. D.; Feng, B.; Pan, Q. L.; Li, S. F.; Venkatesan, R. J. et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater. 2022, 148, 258–270.
[38]

Chen, Y. J.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018, 140, 5678–5681.

[39]

Lu, Y. C.; Yeh, W. C.; Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151.

[40]

Bode, J. G.; Ehlting, C.; Häussinger, D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell. Signal. 2012, 24, 1185–1194.

[41]

Gilroy, D. W.; Colville-Nash, P. R. New insights into the role of COX 2 in inflammation. J. Mol. Med. 2000, 78, 121–129.

[42]

Zhao, C. Y.; Chen, J. X.; Ye, J. M.; Li, Z.; Su, L. C.; Wang, J. Q.; Zhang, Y.; Chen, J. H.; Yang, H. H.; Shi, J. J. et al. Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew. Chem., Int. Ed. 2021, 60, 14458–14466.

[43]

Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167.

[44]

Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.

[45]

Jiang, K. Y.; Weaver, J. D.; Li, Y. J. Y.; Chen, X. J.; Liang, J. P.; Stabler, C. L. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 2017, 114, 71–81.

[46]

Loeser, R. F. Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide. Arthrit. Rheumatol. 2016, 54, 1357–1360.

[47]

Li, M. Z.; Yin, H.; Yan, Z. N.; Li, H. Y.; Wu, J.; Wang, Y.; Wei, F.; Tian, G. Z.; Ning, C.; Li, H. et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022, 140, 23–42.

[48]

Glasson, S. S.; Chambers, M. G.; Van Den Berg, W. B.; Little, C. B. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 2010, 18 Suppl 3, S17–S23.

[49]

Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.

File
12274_2023_5721_MOESM1_ESM.pdf (622.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 January 2023
Revised: 10 April 2023
Accepted: 10 April 2023
Published: 19 May 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially funded by the Beijing Natural Science Foundation (No. JQ20005) and Guangxi Science and Technology Major Project (No. GuikeAA19254002).

Return