Journal Home > Volume 16 , Issue 7

Vertically stacking two-dimensional (2D) materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry, revealed as the moiré superlattices (MSLs). Manipulating the interlayer twist angle enables the modification of the electronic structure of 2D materials to explore the advanced applications. Although extraordinary progress has been achieved in the unique structure and emergent properties of MSLs, the investigation of the catalytic applications of MSLs materials is still in its infancy. It is therefore very urgent to summarize the advanced development of MSLs in the field of catalysis. In this review, we firstly summarize the advanced fabrication and high-resolution characterization techniques of the MSLs materials, as well as their novel properties related to catalysis represented by electrocatalytic hydrogen evolution reaction (HER). Then, all the MSLs materials such as MoS2, WS2, and Ru serving as electrocatalysts for HER are further reviewed in detail. Finally, we outline the current challenges as well as the experimental and theoretical strategies to advance the development of function-oriented MSLs materials for catalysis. This review aims to provide profound insight into the wide applications of this novel material platform in catalytic field.


menu
Abstract
Full text
Outline
About this article

Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction

Show Author's information Yang Li1Yuqi Hua1Ning Sun1Shijie Liu1Hengxu Li1Cheng Wang1Xinyu Yang1Zechao Zhuang2( )Longlu Wang1( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Vertically stacking two-dimensional (2D) materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry, revealed as the moiré superlattices (MSLs). Manipulating the interlayer twist angle enables the modification of the electronic structure of 2D materials to explore the advanced applications. Although extraordinary progress has been achieved in the unique structure and emergent properties of MSLs, the investigation of the catalytic applications of MSLs materials is still in its infancy. It is therefore very urgent to summarize the advanced development of MSLs in the field of catalysis. In this review, we firstly summarize the advanced fabrication and high-resolution characterization techniques of the MSLs materials, as well as their novel properties related to catalysis represented by electrocatalytic hydrogen evolution reaction (HER). Then, all the MSLs materials such as MoS2, WS2, and Ru serving as electrocatalysts for HER are further reviewed in detail. Finally, we outline the current challenges as well as the experimental and theoretical strategies to advance the development of function-oriented MSLs materials for catalysis. This review aims to provide profound insight into the wide applications of this novel material platform in catalytic field.

Keywords: characterization, two-dimensional (2D) materials, fabrication, properties, hydrogen evolution reaction (HER), moiré superlattices

References(192)

[1]

Zhang, Z.; Liu, P. Z.; Song, Y. H.; Hou, Y.; Xu, B. S.; Liao, T.; Zhang, H. X.; Guo, J. J.; Sun, Z. Q. Heterostructure engineering of 2D superlattice materials for electrocatalysis. Adv. Sci. 2022, 9, 2204297.

[2]

Xia, Z. H. Hydrogen evolution: Guiding principles. Nat. Energy 2016, 1, 16155.

[3]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[4]

Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4 Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

[5]

Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.

[6]

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

[7]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[8]

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

[9]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[10]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[11]

Mei, J.; Zhang, Y. W.; Liao, T.; Sun, Z. Q.; Dou, S. X. Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 2018, 5, 389–416.

[12]

Wahab, O. J.; Unwin, P. R. Let’s twist electrochem. Nat. Chem. 2022, 14, 248–250.

[13]

Yu, Y.; Zhang, K. D.; Parks, H.; Babar, M.; Carr, S.; Craig, I. M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273.

[14]

Yu, Y.; Van Winkle, M.; Bediako, D. K. Tuning interfacial chemistry with twistronics. Trends Chem. 2022, 4, 857–859.

[15]

Carr, S.; Massatt, D.; Fang, S. A.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 2017, 95, 075420.

[16]

Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.

[17]

Hennighausen, Z.; Kar, S. Twistronics: A turning point in 2D quantum materials. Electron. Struct. 2021, 3, 014004.

[18]

Inani, H.; Shin, D. H.; Madsen, J.; Jeong, H.; Kwon, M. H.; McEvoy, N.; Susi, T.; Mangler, C.; Lee, S. W.; Mustonen, K. et al. Step-by-step atomic insights into structural reordering from 2D to 3D MoS2. Adv. Funct. Mater. 2021, 31, 2008395.

[19]

Yang, H.; Liu, L. W.; Yang, H. X.; Zhang, Y.; Wu, X.; Huang, Y.; Gao, H. J.; Wang, Y. L. Advance in two-dimensional twisted moiré materials: Fabrication, properties, and applications. Nano Res. 2023, 16, 2579–2596.

[20]

He, F.; Zhou, Y. J.; Ye, Z. F.; Cho, S. H.; Jeong, J.; Meng, X. H.; Wang, Y. G. Moiré patterns in 2D materials: A review. ACS Nano 2021, 15, 5944–5958.

[21]

Xing, F.; Ji, G. M.; Li, Z. W.; Zhong, W. H.; Wang, F. Y.; Liu, Z. B.; Xin, W.; Tian, J. G. Preparation, properties and applications of two-dimensional superlattices. Mater. Horiz. 2022, 10, 722–744.

[22]

Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

[23]

Lin, M. L.; Tan, Q. H.; Wu, J. B.; Chen, X. S.; Wang, J. H.; Pan, Y. H.; Zhang, X.; Cong, X.; Zhang, J.; Ji, W. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 2018, 12, 8770–8780.

[24]

Wilson, N. P.; Yao, W.; Shan, J.; Xu, X. D. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 2021, 599, 383–392.

[25]

Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K. F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 2021, 16, 52–57.

[26]

Huang, T. Y.; Tu, X. C.; Shen, C. Q.; Zheng, B. J.; Wang, J. Z.; Wang, H.; Khaliji, K.; Park, S. H.; Liu, Z. Y.; Yang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 2022, 605, 63–68.

[27]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[28]

Huang, S. Q.; Kim, K.; Efimkin, D. K.; Lovorn, T.; Taniguchi, T.; Watanabe, K.; MacDonald, A. H.; Tutuc, E.; LeRoy, B. J. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 2018, 121, 037702.

[29]

Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; Xiong, L.; Taniguchi, T.; Watanabe, K. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 2018, 362, 1153–1156.

[30]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[31]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[32]

Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Zhang, Y. H.; Wang, S. X.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61.

[33]

Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.

[34]

Liu, X. M.; Hao, Z. Y.; Khalaf, E.; Lee, J. Y.; Ronen, Y.; Yoo, H.; Najafabadi, D. H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225.

[35]

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

[36]

Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

[37]

Zhang, X. R.; Wu, T.; Yu, C.; Lu, R. F. Ultrafast interlayer charge separation, enhanced visible-light absorption, and tunable overpotential in twisted graphitic carbon nitride bilayers for water splitting. Adv. Mater. 2021, 33, 2104695.

[38]

Jiang, Z. Z.; Zhou, W. D.; Hong, A. J.; Guo, M. M.; Luo, X. F.; Yuan, C. L. MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 2830–2835.

[39]

Liu, L. L.; Sun, Y. H.; Cui, X. Q.; Qi, K.; He, X.; Bao, Q. L.; Ma, W. L.; Lu, J.; Fang, H. Y.; Zhang, P. et al. Bottom-up growth of homogeneous moiré superlattices in bismuth oxychloride spiral nanosheets. Nat. Commun. 2019, 10, 4472.

[40]

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

[41]

Zhang, H. Z.; Wu, W. J.; Zhou, L.; Wu, Z.; Zhu, J. Steering on degrees of freedom of 2D van der Waals heterostructures. Small Science 2022, 2, 2100033.

[42]

Xiao, Y.; Liu, J. L.; Fu, L. Moiré is more: Access to new properties of two-dimensional layered materials. Matter 2020, 3, 1142–1161.

[43]

Sun, Z. Q.; Liao, T.; Kou, L. Z. Strategies for designing metal oxide nanostructures. Sci. China Mater. 2017, 60, 1–24.

[44]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[45]

Kumar, P.; Lynch, J.; Song, B. K.; Ling, H. N.; Barrera, F.; Kisslinger, K.; Zhang, H. Q.; Anantharaman, S. B.; Digani, J.; Zhu, H. Y. et al. Light-matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 2022, 17, 182–189.

[46]

Jin, G.; Lee, C. S.; Okello, O. F. N.; Lee, S. H.; Park, M. Y.; Cha, S.; Seo, S. Y.; Moon, G.; Min, S. Y.; Yang, D. H. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 2021, 16, 1092–1098.

[47]

Cai, L.; Yu, G. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv. Mater. 2021, 33, 2004974.

[48]

Liu, M. Y.; Wang, L. P.; Yu, G. Developing graphene-based moiré heterostructures for twistronics. Adv. Sci. 2022, 9, 2103170.

[49]

Nimbalkar, A.; Kim, H. Opportunities and challenges in twisted bilayer graphene: A review. Nanomicro Lett. 2020, 12, 126.

[50]

Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

[51]

Lan, C. Y.; Zhou, Z. Y.; Zhou, Z. F.; Li, C.; Shu, L.; Shen, L. F.; Li, D. P.; Dong, R. T.; Yip, S.; Ho, J. C. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 2018, 11, 3371–3384.

[52]

Govind Rajan, A.; Warner, J. H.; Blankschtein, D.; Strano, M. S. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 4330–4344.

[53]

Yin, J. B.; Wang, H.; Peng, H.; Tan, Z. J.; Liao, L.; Lin, L.; Sun, X.; Koh, A. L.; Chen, Y. L.; Peng, H. L. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun 2016, 7, 10699.

[54]

Xiong, P.; Zhang, X.; Wan, H.; Wang, S.; Zhao, Y.; Zhang, J.; Zhou, D.; Gao, W.; Ma, R.; Sasaki, T. et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett 2019, 19, 4518–4526.

[55]

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

[56]

Chen, Y. C.; Lin, W. H.; Tseng, W. S.; Chen, C. C.; Rossman, G. R.; Chen, C. D.; Wu, Y. S.; Yeh, N. C. Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 2020, 156, 212–224.

[57]

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

[58]

Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

[59]

Zhang, J. T.; Mao, X. N.; Wang, S. L.; Liang, L. L.; Cao, M. F.; Wang, L.; Li, G.; Xu, Y.; Huang, X. Q. Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202116867.

[60]

Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

[61]
Eichfeld, S. M. ; Hossain, L. ; Lin, Y. C. ; Piasecki, A. F. ; Kupp, B. ; Birdwell, A. G. ; Burke, R. A. ; Lu, N. ; Peng, X. ; Li, J. et al. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 2015, 9, 2080–2087.
[62]
Senthilkumar, V. ; Tam, L. C. ; Kim, Y. S. ; Sim, Y. ; Seong, M. J. ; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.
[63]
Zhang, Y. ; Yao, Y. Y. ; Sendeku, M. G. ; Yin, L. ; Zhan, X. Y. ; Wang, F. ; Wang, Z. X. ; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.
[64]

Abbas, G.; Li, Y.; Wang, H. D.; Zhang, W. X.; Wang, C.; Zhang, H. Recent advances in twisted structures of flatland materials and crafting moiré superlattices. Adv. Funct. Mater. 2020, 30, 2000878.

[65]

Ahn, S. J.; Moon, P.; Kim, T. H.; Kim, H. W.; Shin, H. C.; Kim, E. H.; Cha, H. W.; Kahng, S. J.; Kim, P.; Koshino, M. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786.

[66]

Deng, B.; Wang, B. B.; Li, N.; Li, R. T.; Wang, Y. N.; Tang, J. L.; Fu, Q.; Tian, Z.; Gao, P.; Xue, J. M. et al. Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 2020, 14, 1656–1664.

[67]

Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

[68]

Dean, C. R.; Young, A. F.; Cadden-Zimansky, P.; Wang, L.; Ren, H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J.; Shepard, K. L. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 2011, 7, 693–696.

[69]

Xue, J. M.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

[70]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[71]

Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

[72]

Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

[73]

Chen, X. D.; Xin, W.; Jiang, W. S.; Liu, Z. B.; Chen, Y. S.; Tian, J. G. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 2016, 28, 2563–2570.

[74]

Cao, Y.; Luo, J. Y.; Fatemi, V.; Fang, S.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 2016, 117, 116804.

[75]
Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.
[76]

Saito, Y.; Ge, J. Y.; Watanabe, K.; Taniguchi, T.; Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020, 16, 926–930.

[77]

Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

[78]

Zhang, S.; Xu, Q.; Hou, Y.; Song, A. S.; Ma, Y.; Gao, L.; Zhu, M. Z.; Ma, T. B.; Liu, L. Q.; Feng, X. Q. et al. Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nat. Mater. 2022, 21, 621–626.

[79]

Wang, B.; Huang, M.; Kim, N. Y.; Cunning, B. V.; Huang, Y.; Qu, D. S.; Chen, X. J.; Jin, S.; Biswal, M.; Zhang, X. et al. Controlled folding of single crystal graphene. Nano Lett. 2017, 17, 1467–1473.

[80]

Rode, J. C.; Zhai, D. W.; Belke, C.; Hong, S. J.; Schmidt, H.; Sandler, N.; Haug, R. J. Linking interlayer twist angle to geometrical parameters of self-assembled folded graphene structures. 2D Mater. 2018, 6, 015021.

[81]

Zhang, W. F.; Hao, H.; Lee, Y.; Zhao, Y.; Tong, L. M.; Kim, K.; Liu, N. One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 2022, 32, 2111529.

[82]

Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572–578.

[83]

Chen, M.; Xia, J.; Zhou, J. D.; Zeng, Q. S.; Li, K. W.; Fujisawa, K.; Fu, W.; Zhang, T.; Zhang, J.; Wang, Z. et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano 2017, 11, 9191–9199.

[84]

Lau, C. N.; Bockrath, M. W.; Mak, K. F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50.

[85]

Tao, Z. R.; Wu, J. X.; Zhao, Y. J.; Xu, M.; Tang, W. Q.; Zhang, Q. H.; Gu, L.; Liu, D. H.; Gu, Z. Y. Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nat. Commun. 2019, 10, 2911.

[86]

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

[87]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[88]

Wu, Y. C.; Wang, J. Y.; Li, Y. B.; Zhou, J. W.; Wang, B. Y.; Yang, A. K.; Wang, L. W.; Hwang, H. Y.; Cui, Y. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 2022, 13, 3008.

[89]

Hong, H.; Zhang, J. C.; Zhang, J.; Qiao, R. X.; Yao, F. R.; Cheng, Y.; Wu, C. C.; Lin, L.; Jia, K. C.; Zhao, Y. C. et al. Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface. J. Am. Chem. Soc. 2018, 140, 14952–14957.

[90]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

[91]

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

[92]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[93]

Yuan, C. L.; Mei, Y. X.; Hong, A. J.; Yu, T.; Yang, Y.; Zeng, F. Y.; Xu, K.; Li, Q. L.; Luo, X. F.; He, J. et al. Strain engineered band structure and optical properties of confined GaAs quantum dots. J. Phys. Chem. C 2017, 121, 5800–5804.

[94]

Cui, X. P.; Kong, Z. Z.; Gao, E. L.; Huang, D. Z.; Hao, Y.; Shen, H. G.; Di, C. A.; Xu, Z. P.; Zheng, J.; Zhu, D. B. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301.

[95]

Wu, X.; Zhang, H. B.; Zhang, J.; Lou, X. W. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376.

[96]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

[97]

Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

[98]

Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

[99]

Shao, Y. L.; Fu, J. H.; Cao, Z.; Song, K. P.; Sun, R. F.; Wan, Y.; Shamim, A.; Cavallo, L.; Han, Y.; Kaner, R. B. et al. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors. ACS Nano 2020, 14, 7308–7318.

[100]

Gao, D. Q.; Xia, B. R.; Wang, Y. Y.; Xiao, W.; Xi, P. X.; Xue, D. S.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150.

[101]

Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

[102]

Wu, X.; Dong, J. C.; Qiu, M.; Li, Y.; Zhang, Y. F.; Zhang, H. B.; Zhang, J. Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc-air batteries. Nanoscale Horiz. 2020, 5, 359–365.

[103]

Zhang, H. B.; Wang, Y. W.; Zuo, S.; Zhou, W.; Zhang, J.; Lou, X. W. D. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 2021, 143, 2173–2177.

[104]

Yu, Y. L.; Jung, G. S.; Liu, C. Z.; Lin, Y. C.; Rouleau, C. M.; Yoon, M.; Eres, G.; Duscher, G.; Xiao, K.; Irle, S. et al. Strain-induced growth of twisted bilayers during the coalescence of monolayer MoS2 crystals. ACS Nano 2021, 15, 4504–4517.

[105]

Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

[106]

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

[107]

Günther, S.; Zeller, P.; Böller, B.; Wintterlin, J. Method for the manual analysis of moiré structures in STM images. ChemPhysChem 2021, 22, 870–884.

[108]

Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256–11260.

[109]

Weston, A.; Zou, Y. C.; Enaldiev, V.; Summerfield, A.; Clark, N.; Zólyomi, V.; Graham, A.; Yelgel, C.; Magorrian, S.; Zhou, M. W. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2020, 15, 592–597.

[110]

Yoo, H.; Engelke, R.; Carr, S.; Fang, S. A.; Zhang, K.; Cazeaux, P.; Sung, S. H.; Hovden, R.; Tsen, A. W.; Taniguchi, T. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 2019, 18, 448–453.

[111]

Flores, M.; Cisternas, E.; Correa, J. D.; Vargas, P. Moiré patterns on STM images of graphite induced by rotations of surface and subsurface layers. Chem. Phys. 2013, 423, 49–54.

[112]

van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

[113]

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[114]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[115]
Tan, P. H. Raman Spectroscopy of Two-Dimensional Materials; Springer: Singapore, 2019.
[116]

Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

[117]
Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. Raman Spectroscopy in Graphene Related Systems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011.
[118]

Cong, X.; Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. NPJ 2D Mater. Appl. 2020, 4, 13.

[119]

Wu, Q.; Fang, Z. X.; Zhu, Y. L.; Song, H. Z.; Liu, Y.; Su, X.; Pan, D. F.; Gao, Y.; Wang, P.; Yan, S. C. et al. Controllable edge epitaxy of helical GeSe/GeS heterostructures. Nano Lett. 2022, 22, 5086–5093.

[120]

Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

[121]

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

[122]

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

[123]

Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

[124]

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

[125]
Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Pan, A. L.; Liu, Y. P. Moiré enhanced potentials in twisted transition metal dichalcogenide trilayers homostructures. Res. Square, in press, https://doi.org/10.21203/rs.3.rs-1619289/v1.
[126]

Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

[127]

Yan, J. X.; Xia, J.; Wang, X. L.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S. S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161.

[128]

Cheng, Y.; Huang, C.; Hong, H.; Zhao, Z. X.; Liu, K. H. Emerging properties of two-dimensional twisted bilayer materials. Chin. Phys. B 2019, 28, 107304.

[129]

Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

[130]

Kang, J.; Li, J. B.; Li, S. S.; Xia, J. B.; Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485–5490.

[131]

Huang, S. X.; Liang, L. B.; Ling, X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016, 16, 1435–1444.

[132]

Ji, J. T.; Dong, S.; Zhang, A. M.; Zhang, Q. M. Low-frequency interlayer vibration modes in two-dimensional layered materials. Physica E Low Dimens. Syst. Nanostruct. 2016, 80, 130–141.

[133]

Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333–6342.

[134]

Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.

[135]

Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.

[136]

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

[137]

Du, X. J.; Lee, Y.; Zhang, Y.; Yu, T. H.; Kim, K.; Liu, N. Electronically weak coupled bilayer MoS2 at various twist angles via folding. ACS Appl. Mater. Interfaces 2021, 13, 22819–22827.

[138]

Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

[139]

Long, M.; Pantaleón, P. A.; Zhan, Z.; Guinea, F.; Silva-Guillén, J. Á.; Yuan, S. J. An atomistic approach for the structural and electronic properties of twisted bilayer graphene-boron nitride heterostructures. NPJ Comput. Mater. 2022, 8, 73.

[140]

Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508.

[141]

Li, Z. C.; Yan, X. X.; Tang, Z. K.; Huo, Z. Y.; Li, G. L.; Jiao, L. Y.; Liu, L. M.; Zhang, M.; Luo, J.; Zhu, J. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Sci. Rep. 2017, 7, 8323.

[142]

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

[143]

Su, M. X.; Zhou, W. D.; Liu, L.; Chen, M. Y.; Jiang, Z. Z.; Luo, X. F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Micro eddy current facilitated by screwed MoS2 structure for enhanced hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2111067.

[144]

Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

[145]

Zhang, J.; Hong, H.; Lian, C.; Ma, W.; Xu, X. Z.; Zhou, X.; Fu, H. X.; Liu, K. H.; Meng, S. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 2017, 4, 1700086.

[146]

Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; Jin, C. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020–12026.

[147]

Zhang, Q.; Xiao, X.; Zhao, R. Q.; Lv, D. H.; Xu, G. C.; Lu, Z. X.; Sun, L. F.; Lin, S. Z.; Gao, X.; Zhou, J. et al. Two-dimensional layered heterostructures synthesized from core–shell nanowires. Angew. Chem., Int. Ed. 2015, 54, 8957–8960.

[148]

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

[149]

Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

[150]

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

[151]

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717–12724.

[152]

Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

[153]

Ceballos, F.; Ju, M. G.; Lane, S. D.; Zeng, X. C.; Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623–1628.

[154]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[155]

Turkel, S.; Swann, J.; Zhu, Z. Y.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M. S.; Kaxiras, E.; Dean, C. R. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199.

[156]

An, L. H.; Cai, X. B.; Pei, D.; Huang, M. Z.; Wu, Z. F.; Zhou, Z. S.; Lin, J. X. Z.; Ying, Z. H.; Ye, Z. Q.; Feng, X. M. et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 2020, 5, 1309–1316.

[157]

Capon, A.; Parsons, R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44, 239–254.

[158]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[159]
Zhang, Y. ; Felser, C. ; Fu, L. Moiré metal for catalysis. 2021, arXiv:2111.03058. arXiv.org e-Print archive. https://arxiv.org/abs/2111.03058 (accessed Nov 22, 2021).
[160]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[161]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[162]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[163]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[164]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[165]

Chen, J. D.; Chen, C. H.; Qin, M. K.; Li, B.; Lin, B. B.; Mao, Q.; Yang, H. B.; Liu, B.; Wang, Y. Reversible hydrogen spillover in Ru-WO3−x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 2022, 13, 5382.

[166]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[167]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[168]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[169]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[170]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[171]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[172]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

[173]

Anjum, M. A. R.; Jeong, H. Y.; Lee, M. H.; Shin, H. S.; Lee, J. S. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites. Adv. Mater. 2018, 30, e1707105.

[174]

Kong, D.; Wang, H.; Cha, J.; Pasta, M.; Koski, K.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[175]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[176]

Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

[177]

Jin, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805–810.

[178]

Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Xi, P. X.; Tao, K.; Gao, D. Q.; Xue, D. S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752.

[179]

Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

[180]

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

[181]

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

[182]

Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

[183]

Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

[184]

Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

[185]

Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

[186]

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[187]

Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664–10672.

[188]

Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 2014, 6, 248–253.

[189]

Hellstern, T. R.; Kibsgaard, J.; Tsai, C.; Palm, D. W.; King, L. A.; Abild-Pedersen, F.; Jaramillo, T. F. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017, 7, 7126–7130.

[190]

Gauthier, J. A.; King, L. A.; Stults, F. T.; Flores, R. A.; Kibsgaard, J.; Regmi, Y. N.; Chan, K.; Jaramillo, T. F. Transition metal arsenide catalysts for the hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 24007–24012.

[191]

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

[192]

Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2023
Revised: 01 April 2023
Accepted: 05 April 2023
Published: 23 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), Natural Science Foundation of Jiangsu Province (No. BK20201381), and Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144).

Return