Journal Home > Volume 16 , Issue 7

Pt-based catalysts are used commercially for the hydrogen evolution reaction (HER), even though the low earth abundance and high cost of platinum hinder scale-up applications. Ru metal is a promising alternative catalyst for HER owing to its lower cost but similar metal–hydrogen bond strength to Pt. However, designing an efficient and robust Ru-based electrocatalyst for pH-universal HER is challenging. Herein, we successfully synthesized N-doped carbon (NC) supported ruthenium catalysts with different Ru sizes (single-atoms, nanoclusters and nanoparticles), and then systematically evaluated their performance for HER. Among these catalysts, the Ru nanocluster catalyst (Ru NCs/NC) displayed optimal catalytic performance with overpotentials of only 14, 30, and 32 mV (at 10 mA·cm−2) in 1 M KOH, 1 M phosphate buffer saline (PBS), and 0.5 M H2SO4, respectively. The corresponding mass activities were 32.2, 12.1 and 8.1 times higher than those of 20 wt.% Pt/C, and also much better than those of the Ru single-atoms (Ru SAs/NC) and Ru nanoparticle (Ru NPs/NC) catalysts, at an overpotential of 100 mV under alkaline, neutral and acidic conditions, respectively. Density functional theory (DFT) calculations revealed that the outstanding HER performance of the Ru NCs/NC catalyst resulted from a strong interaction between the Ru nanoclusters and the N-doped carbon support, which downshifted the d-band center and thus weakened the *H adsorption ability of Ru sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction

Show Author's information Xiaoxiao Huang1,§Ruihu Lu2,§Yaping Cen1Dunchao Wang1Shao Jin1Wenxing Chen3Geoffrey I.1,2,3N. Waterhouse2Ziyun Wang2( )Shubo Tian1( )Xiaoming Sun1( )
State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

§ Xiaoxiao Huang and Ruihu Lu contributed equally to this work.

Abstract

Pt-based catalysts are used commercially for the hydrogen evolution reaction (HER), even though the low earth abundance and high cost of platinum hinder scale-up applications. Ru metal is a promising alternative catalyst for HER owing to its lower cost but similar metal–hydrogen bond strength to Pt. However, designing an efficient and robust Ru-based electrocatalyst for pH-universal HER is challenging. Herein, we successfully synthesized N-doped carbon (NC) supported ruthenium catalysts with different Ru sizes (single-atoms, nanoclusters and nanoparticles), and then systematically evaluated their performance for HER. Among these catalysts, the Ru nanocluster catalyst (Ru NCs/NC) displayed optimal catalytic performance with overpotentials of only 14, 30, and 32 mV (at 10 mA·cm−2) in 1 M KOH, 1 M phosphate buffer saline (PBS), and 0.5 M H2SO4, respectively. The corresponding mass activities were 32.2, 12.1 and 8.1 times higher than those of 20 wt.% Pt/C, and also much better than those of the Ru single-atoms (Ru SAs/NC) and Ru nanoparticle (Ru NPs/NC) catalysts, at an overpotential of 100 mV under alkaline, neutral and acidic conditions, respectively. Density functional theory (DFT) calculations revealed that the outstanding HER performance of the Ru NCs/NC catalyst resulted from a strong interaction between the Ru nanoclusters and the N-doped carbon support, which downshifted the d-band center and thus weakened the *H adsorption ability of Ru sites.

Keywords: hydrogen evolution reaction, Ru nanoparticles, Ru nanoclusters, Ru single atoms

References(60)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[3]

dos Santos, K. G.; Eckert, C. T.; De Rossi, E.; Bariccatti, R. A.; Frigo, E. P.; Lindino, C. A.; Alves, H. J. Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 2017, 68, 563–571.

[4]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[5]

Zhang, J. C.; Chen, G. B.; Liu, Q. C.; Fan, C.; Sun, D. M.; Tang, Y. W.; Sun, H. J.; Feng, X. L. Competitive adsorption: Reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202209486.

[6]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[7]

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

[8]

Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

[9]

Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem., Int. Ed. 2018, 57, 9300–9304.

[10]

Zhu, S. Q.; Shao, M. H. Electrolyte pH-dependent hydrogen binding energies and coverages on platinum, iridium, rhodium, and ruthenium surfaces. Catal. Sci. Technol. 2022, 12, 3228–3233.

[11]

Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

[12]

Li, P. S.; Duan, X. X.; Wang, S. Y.; Zheng, L. R.; Li, Y. P.; Duan, H. H.; Kuang, Y.; Sun, X. M. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small 2019, 15, 1904043.

[13]

Chen, H.; Ai, X.; Liu, W.; Xie, Z. B.; Feng, W. Q.; Chen, W.; Zou, X. X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 11409–11413.

[14]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[15]

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

[16]

Yang, Z. P.; Yang, D. D.; Wang, Y.; Long, Y.; Huang, W. C.; Fan, G. Y. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. Nanoscale 2021, 13, 10044–10050.

[17]

Li, J. S.; Huang, M. J.; Zhou, Y. W.; Chen, X. N.; Yang, S.; Zhu, J. Y.; Liu, G. D.; Ma, L. J.; Cai, S. H.; Han, J. Y. RuP2-based hybrids derived from MOFs: Highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 12276–12282.

[18]

Liu, Y.; Liu, S. L.; Wang, Y.; Zhang, Q. H.; Gu, L.; Zhao, S. C.; Xu, D. D.; Li, Y. F.; Bao, J. C.; Dai, Z. H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 2018, 140, 2731–2734.

[19]

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

[20]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[21]

Hu, C.; Song, E. H.; Wang, M. Y.; Chen, W.; Huang, F. Q.; Feng, Z. X.; Liu, J. J.; Wang, J. C. Partial-single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution. Adv. Sci. 2021, 8, 2001881.

[22]

Zhu, Q. Y.; Huang, X. X.; Zeng, Y. C.; Sun, K.; Zhou, L. L.; Liu, Y. Y.; Luo, L.; Tian, S. B.; Sun, X. M. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. Nanoscale Adv. 2021, 3, 6330–6341.

[23]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[24]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[25]

Yan, L.; Li, P. P.; Zhu, Q. Y.; Kumar, A.; Sun, K.; Tian, S. B.; Sun, X. M. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023, 9, 280–342.

[26]

Kumar, A.; Sun, K.; Duan, X. X.; Tian, S. B.; Sun, X. M. Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction. Chem. Mater. 2022, 34, 5598–5606.

[27]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[28]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[29]

Luo, Z. X.; Zhao, G. Q.; Pan, H. G.; Sun, W. P. Strong metal–support interaction in heterogeneous catalysts. Adv. Energy Mater. 2022, 12, 2201395.

[30]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[31]

Tang, J. L.; Xu, S. H.; Sun, K.; Gao, X. Q.; Chen, A. B.; Tian, S. B.; Zhou, D. J.; Sun, X. M. Recycling synthesis of single-atom Zn-nitrogen-carbon catalyst for electrocatalytic reduction of O2 to H2O2. Sci. China Mater. 2022, 65, 3490–3496.

[32]

Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.

[33]

Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

[34]

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

[35]

Liu, D. Q.; Luo, Z. X.; Zhang, B. X.; Zhao, G. Q.; Guo, W.; Chen, J.; Gao, M. X.; Liu, Y. F.; Pan, H. G.; Sun, W. P. Tailoring interfacial charge transfer of epitaxially grown Ir clusters for boosting hydrogen oxidation reaction. Adv. Energy Mater. 2023, 13, 2202913.

[36]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[37]

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

[38]

Liu, Y.; Zhang, T.; Deng, C.; Cao, S. X.; Dai, X.; Guo, S. W.; Chen, Y. Z.; Tan, Q.; Zhu, H. Y.; Zhang, S. et al. Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. J. Energy Chem. 2022, 72, 116–124.

[39]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.

[40]

Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2013, 135, 8016–8021.

[41]

Li, T. Y.; Zhang, X. Y.; Chen, Y. L.; Zhong, L. X.; Li, S. Z.; Zhang, P. X.; Zhao, C. Y. Boosting the water dissociation kinetics via charge redistribution of ruthenium decorated on S, N-codoped carbon. J. Mater. Chem. A 2021, 9, 16967–16973.

[42]

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wang, Y.; Tang, H. B.; Zheng, L. R.; Li, G. R. N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A 2021, 9, 12659–12669.

[43]

Yang, J.; Chen, B. X.; Liu, X. K.; Liu, W.; Li, Z. J.; Dong, J. C.; Chen, W. X.; Yan, W. S.; Yao, T.; Duan, X. Z. et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem., Int. Ed. 2018, 57, 9495–9500.

[44]

Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

[45]

Wang, Y. J.; Luo, W. J.; Li, H. J.; Cheng, C. W. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. Nanoscale Adv. 2021, 3, 5068–5074.

[46]

Xie, Q. J.; Wang, Z.; Lin, L. K.; Shu, Y.; Zhang, J. J.; Li, C.; Shen, Y. H.; Uyama, H. Nanoscaled and atomic ruthenium electrocatalysts confined inside super-hydrophilic carbon nanofibers for efficient hydrogen evolution reaction. Small 2021, 17, 2102160.

[47]

Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

[48]

Lin, J. F.; Ding, J. N.; Wang, H. Z.; Yang, X. Y.; Zheng, X. R.; Huang, Z. C.; Song, W. Q.; Ding, J.; Han, X. P.; Hu, W. B. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.

[49]

Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

[50]

Wu, Y. C.; Wei, W.; Yu, R. H.; Xia, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

[51]

Li, L.; Zhang, G. W.; Wang, B.; Yang, T.; Yang, S. C. Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 2090–2098.

[52]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[53]

Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

[54]

Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36.

[55]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[56]

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

[57]

Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

[58]

Moussallem, I.; Jörissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194.

[59]

Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

[60]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.;Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

File
12274_2023_5711_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 February 2023
Revised: 03 April 2023
Accepted: 07 April 2023
Published: 25 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2021YFA1502200 and 2022YFA1504003), the National Natural Science Foundation of China (Nos. 21935001 and 22101015), and the Fundamental Research Funds of Beijing University of Chemical Technology (Nos. buctrc202107 and buctrc202212). The computational study was supported by the Marsden Fund Council (No. 21-UOA-237) from Government funding, managed by Royal Society Te Apārangi and Catalyst: Seeding Grant (22-UOA-031-CSG) provided by the New Zealand Ministry of Business, Innovation and Employment and administered by the Royal Society Te Apārangi. Z. Y. W. and R. H. L. wish to acknowledge the use of New Zealand eScience Infrastructure (NeSI) high performance computing facilities, consulting support, and/or training services as part of this research. GINW acknowledges funding support from the Royal Society Te Apārangi (for the award of James Cook Research Fellowship).

Return