Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Self-trapped excitons (STEs) emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices. Nevertheless, the in-depth understanding of the relationship between exciton-phonon coupling and luminescence intensity remains incomplete. Herein, a doping-enhanced exciton-phonon coupling effect is observed in Cs3Cu2I5 nanocrystals (NCs), which leads to a remarkable increasement of their STEs emission efficiency. Mechanism study shows that the hetero-valent substitution of Cu+ with alkaline-earth metal ions (AE2+) causes a greater degree of Jahn–Teller distortion between the ground state and excited state structures of [Cu2I5]3− clusters as evidenced by our spectral analysis and first-principles calculations. As a consequence, an X-ray detector based on these Cs3Cu2I5:AE NCs delivers an X-ray imaging resolution of up to 10 lp·mm−1 and a low detection limit of 0.37 μGyair·s−1, disclosing the potential of doping-enhanced exciton-phonon coupling effect in improving STEs-emission and practical application for X-ray imaging.
Guo, Q. X.; Zhao, X.; Song, B. X.; Luo, J. J.; Tang, J. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications. Adv. Mater. 2022, 34, 2201008.
Zhang, F.; Zhou, Y. C.; Chen, Z. P.; Wang, M.; Ma, Z. Z.; Chen, X.; Jia, M. C.; Wu, D.; Xiao, J. W.; Li, X. J. et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 2022, 34, 2204801.
Wang, Q.; Zhou, Q.; Nikl, M.; Xiao, J. W.; Kucerkova, R.; Beitlerova, A.; Babin, V.; Prusa, P.; Linhart, V.; Wang, J. K. et al. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Adv. Opt. Mater. 2022, 10, 2200304.
Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.
Tian, T. F.; Xiong, X. H.; Zhao, Y. X.; Li, H.; Wang, W.; Wang, L. Ultra-wideband warm white light emission from self-trapped excitons in CsAgCl2. J. Alloys Compd. 2022, 895, 162632.
Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.
Wolf, N. R.; Connor, B. A.; Slavney, A. H.; Karunadasa, H. I. Doubling the stakes: The promise of halide double perovskites. Angew. Chem., Int. Ed. 2021, 60, 16264–16278.
Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Magalhaes, D. V.; Bals, S.; Hens, Z. Cyan emission in two-dimensional colloidal Cs2CdCl4: Sb3+ ruddlesden-popper phase nanoplatelets. ACS Nano 2021, 15, 17729–17737.
Tang, H. D.; Xu, Y. Q.; Hu, X. B.; Hu, Q.; Chen, T.; Jiang, W. H.; Wang, L. J.; Jiang, W. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability. Adv. Sci. 2021, 8, 2004118.
Li, S.; Xu, J.; Li, Z. G.; Zeng, Z. C.; Li, W.; Cui, M. H.; Qin, C. C.; Du, Y. P. One-dimensional lead-free halide with near-unity greenish-yellow light emission. Chem. Mater. 2020, 32, 6525–6531.
Wang, L. T.; Shi, Z. F.; Ma, Z. Z.; Yang, D. W.; Zhang, F.; Ji, X. Z.; Wang, M.; Chen, X.; Na, G. R.; Chen, S. et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 2020, 20, 3568–3576.
Sun, J. Y.; Zheng, W.; Huang, P.; Zhang, M. R.; Zhang, W.; Deng, Z. H.; Yu, S. H.; Jin, M. Y.; Chen, X. Y. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization. Angew. Chem., Int. Ed. 2022, 61, e202201993.
Cheng, X. W.; Li, R. F.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Gong, Z. L.; Xu, J.; Han, S. Y.; Chen, X. Y. Tailoring the broadband emission in all-inorganic lead-free 0D In-based halides through Sb3+ doping. Adv. Opt. Mater. 2021, 9, 2100434.
Gao, F.; Zhu, X. N.; Feng, Q. S.; Zhong, W. H.; Liu, W. Z.; Xu, H. Y.; Liu, Y. C. Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications. Nano Energy 2022, 98, 107270.
Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.
Yang, B.; Yin, L. X.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Tan, Z. F.; Miao, X. S.; Niu, M.; Du, X. Y.; Song, H. S. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 2019, 31, 1904711.
Li, J. W.; Inoshita, T.; Ying, T. P.; Ooishi, A.; Kim, J.; Hosono, H. A highly efficient and stable blue-emitting Cs5Cu3Cl6I2 with a 1D chain structure. Adv. Mater. 2020, 32, 2002945.
Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.
Hu, X. D.; Yan, P.; Ran, P.; Lu, L. P.; Leng, J.; Yang, Y. M.; Li, X. M. In situ fabrication of Cs3Cu2I5: Tl nanocrystal films for high-resolution and ultrastable X-ray imaging. J. Phys. Chem. Lett. 2022, 13, 2862–2870.
Wang, C. Y.; Liang, P.; Xie, R. J.; Yao, Y.; Liu, P.; Yang, Y. T.; Hu, J.; Shao, L. Y.; Sun, X. W.; Kang, F. Y. et al. Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 2020, 32, 7814–7821.
Cheng, P. F.; Zheng, D. Y.; Feng, L.; Liu, Y. F.; Liu, J. X.; Li, J. T.; Yang, Y.; Wang, G. X.; Han, K. L. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission. J. Energy Chem. 2022, 65, 600–604.
Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 2020, 14, 11420–11430.
Qing, J.; Ramesh, S.; Xu, Q.; Liu, X. K.; Wang, H. Y.; Yuan, Z. C.; Chen, Z.; Hou, L. T.; Sum, T. C.; Gao, F. Spacer cation alloying in ruddlesden-popper perovskites for efficient red light-emitting diodes with precisely tunable wavelengths. Adv. Mater. 2021, 33, 2104381.
Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 2019, 31, 1904319.
Pei, Y. F.; Tu, D. T.; Li, C. L.; Han, S. Y.; Xie, Z.; Wen, F.; Wang, L. P.; Chen, X. Y. Boosting near-infrared luminescence of lanthanide in Cs2AgBiCl6 double perovskites via breakdown of the local site symmetry. Angew. Chem., Int. Ed. 2022, 61, e202205276.
Gao, M. Y.; Zhang, Y.; Lin, Z. N.; Jin, J. B.; Folgueras, M. C.; Yang, P. D. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 2021, 4, 3874–3896.
Ahmed, G. H.; Liu, Y.; Bravić, I.; Ng, X.; Heckelmann, I.; Narayanan, P.; Fernández, M. S.; Monserrat, B.; Congreve, D. N.; Feldmann, S. Luminescence enhancement due to symmetry breaking in doped halide perovskite nanocrystals. J. Am. Chem. Soc. 2022, 144, 15862–15870.
Wang, X. J.; Zhang, X. Z.; Yan, S.; Liu, H.; Zhang, Y. H. Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6:Tb. Angew. Chem., Int. Ed. 2022, 61, e202210853.
Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.
Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S. X.; Rogach, A. L.; Xing, G. C.; Shi, P.; Wang, F. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606.
Fattal, H.; Creason, T. D.; Delzer, C. J.; Yangui, A.; Hayward, J. P.; Ross, B. J.; Du, M. H.; Glatzhofer, D. T.; Saparov, B. Zero-dimensional hybrid organic-inorganic indium bromide with blue emission. Inorg. Chem. 2021, 60, 1045–1054.
Liang, D. H.; Liu, X. H.; Luo, B. B.; Qian, Q. K.; Cai, W. S.; Zhao, S. Y.; Chen, J. Z.; Zang, Z. G. High quantum yield of In-based halide perovskites for white light emission and flexible X-ray scintillators. EcoMat 2023, 5, e12296.
Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.
Cheng, S. L.; Nikl, M.; Beitlerova, A.; Kucerkova, R.; Du, X. Y.; Niu, G. D.; Jia, Y. C.; Tang, J.; Ren, G. H.; Wu, Y. T. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 2021, 9, 2100460.
Zhao, X.; Jin, T.; Gao, W. R.; Niu, G. D.; Zhu, J. S.; Song, B. X.; Luo, J. J.; Pan, W. C.; Wu, H. D.; Zhang, M. Y. et al. Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-ray imaging. Adv. Opt. Mater. 2021, 9, 2101194.
Lian, L. Y.; Zheng, M. Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J. B.; Niu, G. D.; Zhang, D. L.; Zhai, T. Y. et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468.
Chen, H. J.; Pina, J. M.; Yuan, F. L.; Johnston, A.; Ma, D. X.; Chen, B.; Li, Z. L.; Dumont, A.; Li, X. Y.; Liu, Y. A. et al. Multiple self-trapped emissions in the lead-free halide Cs3Cu2I5. J. Phys. Chem. Lett. 2020, 11, 4326–4330.
Luo, Z. S.; Li, Q.; Zhang, L. M.; Wu, X. T.; Tan, L.; Zou, C.; Liu, Y. J.; Quan, Z. W. 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties. Small 2020, 16, 1905226.
Du, P.; Luo, L. H.; Cheng, W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED. J. Am. Ceram. Soc. 2020, 103, 1149–1155.
Xu, Q.; Wang, J.; Zhang, Q. D.; Ouyang, X.; Ye, M. H.; Xie, W. T.; Yan, X. W.; Li, D. Y.; Ouyang, X. P.; Tang, X. B. et al. Solution-processed lead-free bulk 0D Cs3Cu2I5 single crystal for indirect gamma-ray spectroscopy application. Photonics Res. 2021, 9, 351–356.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276.
Hu, X. D.; Li, Y. L.; Wu, Y.; Chen, W. W.; Zeng, H. B.; Li, X. M. One-pot synthesis of Cs3Cu2I5 nanocrystals based on thermodynamic equilibrium. Mater. Chem. Front. 2021, 5, 6152–6159.
Cheng, P. F.; Sun, L.; Feng, L.; Yang, S. Q.; Yang, Y.; Zheng, D. Y.; Zhao, Y.; Sang, Y. B.; Zhang, R. L.; Wei, D. H. et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 16087–16091.
Guo, Z. H.; Li, J. Z.; Gao, Y.; Cheng, J. J.; Zhang, W. J.; Pan, R. K.; Chen, R.; He, T. C. Multiphoton absorption in low-dimensional cesium copper iodide single crystals. J. Mater. Chem. C 2020, 8, 16923–16929.