Journal Home > Volume 16 , Issue 7

Self-trapped excitons (STEs) emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices. Nevertheless, the in-depth understanding of the relationship between exciton-phonon coupling and luminescence intensity remains incomplete. Herein, a doping-enhanced exciton-phonon coupling effect is observed in Cs3Cu2I5 nanocrystals (NCs), which leads to a remarkable increasement of their STEs emission efficiency. Mechanism study shows that the hetero-valent substitution of Cu+ with alkaline-earth metal ions (AE2+) causes a greater degree of Jahn–Teller distortion between the ground state and excited state structures of [Cu2I5]3− clusters as evidenced by our spectral analysis and first-principles calculations. As a consequence, an X-ray detector based on these Cs3Cu2I5:AE NCs delivers an X-ray imaging resolution of up to 10 lp·mm−1 and a low detection limit of 0.37 μGyair·s−1, disclosing the potential of doping-enhanced exciton-phonon coupling effect in improving STEs-emission and practical application for X-ray imaging.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting self-trapped exciton emission from Cs3Cu2I5 nanocrystals by doping-enhanced exciton-phonon coupling

Show Author's information Xiaohan Li1,2Aijun Liu1,2Zhaoyu Wang2,4( )Youchao Wei2,3Qun Lin2Yameng Chen2Yongsheng Liu1,2,3( )Maochun Hong1,2,3,4( )
College of Chemistry, Fuzhou University, Fuzhou 350116, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Abstract

Self-trapped excitons (STEs) emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices. Nevertheless, the in-depth understanding of the relationship between exciton-phonon coupling and luminescence intensity remains incomplete. Herein, a doping-enhanced exciton-phonon coupling effect is observed in Cs3Cu2I5 nanocrystals (NCs), which leads to a remarkable increasement of their STEs emission efficiency. Mechanism study shows that the hetero-valent substitution of Cu+ with alkaline-earth metal ions (AE2+) causes a greater degree of Jahn–Teller distortion between the ground state and excited state structures of [Cu2I5]3− clusters as evidenced by our spectral analysis and first-principles calculations. As a consequence, an X-ray detector based on these Cs3Cu2I5:AE NCs delivers an X-ray imaging resolution of up to 10 lp·mm−1 and a low detection limit of 0.37 μGyair·s−1, disclosing the potential of doping-enhanced exciton-phonon coupling effect in improving STEs-emission and practical application for X-ray imaging.

Keywords: nanocrystals, Cs3Cu2I5, self-trapped exciton, exciton-phonon coupling, X-ray image

References(46)

[1]

Guo, Q. X.; Zhao, X.; Song, B. X.; Luo, J. J.; Tang, J. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications. Adv. Mater. 2022, 34, 2201008.

[2]

Zhang, F.; Zhou, Y. C.; Chen, Z. P.; Wang, M.; Ma, Z. Z.; Chen, X.; Jia, M. C.; Wu, D.; Xiao, J. W.; Li, X. J. et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 2022, 34, 2204801.

[3]

Wang, Q.; Zhou, Q.; Nikl, M.; Xiao, J. W.; Kucerkova, R.; Beitlerova, A.; Babin, V.; Prusa, P.; Linhart, V.; Wang, J. K. et al. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Adv. Opt. Mater. 2022, 10, 2200304.

[4]

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

[5]

Tian, T. F.; Xiong, X. H.; Zhao, Y. X.; Li, H.; Wang, W.; Wang, L. Ultra-wideband warm white light emission from self-trapped excitons in CsAgCl2. J. Alloys Compd. 2022, 895, 162632.

[6]

Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

[7]

Wolf, N. R.; Connor, B. A.; Slavney, A. H.; Karunadasa, H. I. Doubling the stakes: The promise of halide double perovskites. Angew. Chem., Int. Ed. 2021, 60, 16264–16278.

[8]

Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Magalhaes, D. V.; Bals, S.; Hens, Z. Cyan emission in two-dimensional colloidal Cs2CdCl4: Sb3+ ruddlesden-popper phase nanoplatelets. ACS Nano 2021, 15, 17729–17737.

[9]

Tang, H. D.; Xu, Y. Q.; Hu, X. B.; Hu, Q.; Chen, T.; Jiang, W. H.; Wang, L. J.; Jiang, W. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability. Adv. Sci. 2021, 8, 2004118.

[10]

Li, S.; Xu, J.; Li, Z. G.; Zeng, Z. C.; Li, W.; Cui, M. H.; Qin, C. C.; Du, Y. P. One-dimensional lead-free halide with near-unity greenish-yellow light emission. Chem. Mater. 2020, 32, 6525–6531.

[11]

Wang, L. T.; Shi, Z. F.; Ma, Z. Z.; Yang, D. W.; Zhang, F.; Ji, X. Z.; Wang, M.; Chen, X.; Na, G. R.; Chen, S. et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 2020, 20, 3568–3576.

[12]

Sun, J. Y.; Zheng, W.; Huang, P.; Zhang, M. R.; Zhang, W.; Deng, Z. H.; Yu, S. H.; Jin, M. Y.; Chen, X. Y. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization. Angew. Chem., Int. Ed. 2022, 61, e202201993.

[13]

Cheng, X. W.; Li, R. F.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Gong, Z. L.; Xu, J.; Han, S. Y.; Chen, X. Y. Tailoring the broadband emission in all-inorganic lead-free 0D In-based halides through Sb3+ doping. Adv. Opt. Mater. 2021, 9, 2100434.

[14]

Gao, F.; Zhu, X. N.; Feng, Q. S.; Zhong, W. H.; Liu, W. Z.; Xu, H. Y.; Liu, Y. C. Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications. Nano Energy 2022, 98, 107270.

[15]

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

[16]

Yang, B.; Yin, L. X.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Tan, Z. F.; Miao, X. S.; Niu, M.; Du, X. Y.; Song, H. S. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 2019, 31, 1904711.

[17]

Li, J. W.; Inoshita, T.; Ying, T. P.; Ooishi, A.; Kim, J.; Hosono, H. A highly efficient and stable blue-emitting Cs5Cu3Cl6I2 with a 1D chain structure. Adv. Mater. 2020, 32, 2002945.

[18]

Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.

[19]

Hu, X. D.; Yan, P.; Ran, P.; Lu, L. P.; Leng, J.; Yang, Y. M.; Li, X. M. In situ fabrication of Cs3Cu2I5: Tl nanocrystal films for high-resolution and ultrastable X-ray imaging. J. Phys. Chem. Lett. 2022, 13, 2862–2870.

[20]

Wang, C. Y.; Liang, P.; Xie, R. J.; Yao, Y.; Liu, P.; Yang, Y. T.; Hu, J.; Shao, L. Y.; Sun, X. W.; Kang, F. Y. et al. Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 2020, 32, 7814–7821.

[21]

Cheng, P. F.; Zheng, D. Y.; Feng, L.; Liu, Y. F.; Liu, J. X.; Li, J. T.; Yang, Y.; Wang, G. X.; Han, K. L. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission. J. Energy Chem. 2022, 65, 600–604.

[22]

Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 2020, 14, 11420–11430.

[23]

Qing, J.; Ramesh, S.; Xu, Q.; Liu, X. K.; Wang, H. Y.; Yuan, Z. C.; Chen, Z.; Hou, L. T.; Sum, T. C.; Gao, F. Spacer cation alloying in ruddlesden-popper perovskites for efficient red light-emitting diodes with precisely tunable wavelengths. Adv. Mater. 2021, 33, 2104381.

[24]

Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 2019, 31, 1904319.

[25]

Pei, Y. F.; Tu, D. T.; Li, C. L.; Han, S. Y.; Xie, Z.; Wen, F.; Wang, L. P.; Chen, X. Y. Boosting near-infrared luminescence of lanthanide in Cs2AgBiCl6 double perovskites via breakdown of the local site symmetry. Angew. Chem., Int. Ed. 2022, 61, e202205276.

[26]

Gao, M. Y.; Zhang, Y.; Lin, Z. N.; Jin, J. B.; Folgueras, M. C.; Yang, P. D. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 2021, 4, 3874–3896.

[27]

Ahmed, G. H.; Liu, Y.; Bravić, I.; Ng, X.; Heckelmann, I.; Narayanan, P.; Fernández, M. S.; Monserrat, B.; Congreve, D. N.; Feldmann, S. Luminescence enhancement due to symmetry breaking in doped halide perovskite nanocrystals. J. Am. Chem. Soc. 2022, 144, 15862–15870.

[28]

Wang, X. J.; Zhang, X. Z.; Yan, S.; Liu, H.; Zhang, Y. H. Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6:Tb. Angew. Chem., Int. Ed. 2022, 61, e202210853.

[29]

Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.

[30]

Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S. X.; Rogach, A. L.; Xing, G. C.; Shi, P.; Wang, F. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606.

[31]

Fattal, H.; Creason, T. D.; Delzer, C. J.; Yangui, A.; Hayward, J. P.; Ross, B. J.; Du, M. H.; Glatzhofer, D. T.; Saparov, B. Zero-dimensional hybrid organic-inorganic indium bromide with blue emission. Inorg. Chem. 2021, 60, 1045–1054.

[32]

Liang, D. H.; Liu, X. H.; Luo, B. B.; Qian, Q. K.; Cai, W. S.; Zhao, S. Y.; Chen, J. Z.; Zang, Z. G. High quantum yield of In-based halide perovskites for white light emission and flexible X-ray scintillators. EcoMat 2023, 5, e12296.

[33]

Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.

[34]

Cheng, S. L.; Nikl, M.; Beitlerova, A.; Kucerkova, R.; Du, X. Y.; Niu, G. D.; Jia, Y. C.; Tang, J.; Ren, G. H.; Wu, Y. T. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 2021, 9, 2100460.

[35]

Zhao, X.; Jin, T.; Gao, W. R.; Niu, G. D.; Zhu, J. S.; Song, B. X.; Luo, J. J.; Pan, W. C.; Wu, H. D.; Zhang, M. Y. et al. Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-ray imaging. Adv. Opt. Mater. 2021, 9, 2101194.

[36]

Lian, L. Y.; Zheng, M. Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J. B.; Niu, G. D.; Zhang, D. L.; Zhai, T. Y. et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468.

[37]

Chen, H. J.; Pina, J. M.; Yuan, F. L.; Johnston, A.; Ma, D. X.; Chen, B.; Li, Z. L.; Dumont, A.; Li, X. Y.; Liu, Y. A. et al. Multiple self-trapped emissions in the lead-free halide Cs3Cu2I5. J. Phys. Chem. Lett. 2020, 11, 4326–4330.

[38]

Luo, Z. S.; Li, Q.; Zhang, L. M.; Wu, X. T.; Tan, L.; Zou, C.; Liu, Y. J.; Quan, Z. W. 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties. Small 2020, 16, 1905226.

[39]

Du, P.; Luo, L. H.; Cheng, W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED. J. Am. Ceram. Soc. 2020, 103, 1149–1155.

[40]

Xu, Q.; Wang, J.; Zhang, Q. D.; Ouyang, X.; Ye, M. H.; Xie, W. T.; Yan, X. W.; Li, D. Y.; Ouyang, X. P.; Tang, X. B. et al. Solution-processed lead-free bulk 0D Cs3Cu2I5 single crystal for indirect gamma-ray spectroscopy application. Photonics Res. 2021, 9, 351–356.

[41]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276.

[44]

Hu, X. D.; Li, Y. L.; Wu, Y.; Chen, W. W.; Zeng, H. B.; Li, X. M. One-pot synthesis of Cs3Cu2I5 nanocrystals based on thermodynamic equilibrium. Mater. Chem. Front. 2021, 5, 6152–6159.

[45]

Cheng, P. F.; Sun, L.; Feng, L.; Yang, S. Q.; Yang, Y.; Zheng, D. Y.; Zhao, Y.; Sang, Y. B.; Zhang, R. L.; Wei, D. H. et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 16087–16091.

[46]

Guo, Z. H.; Li, J. Z.; Gao, Y.; Cheng, J. J.; Zhang, W. J.; Pan, R. K.; Chen, R.; He, T. C. Multiphoton absorption in low-dimensional cesium copper iodide single crystals. J. Mater. Chem. C 2020, 8, 16923–16929.

File
12274_2023_5708_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2023
Revised: 23 March 2023
Accepted: 02 April 2023
Published: 06 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the Fund of Fujian Science & Technology Innovation Laboratory for Optoelectronic Information (Nos. 2020ZZ114 and 2022ZZ204), the Key Research Program of Frontier Science CAS (No. QYZDY-SSW-SLH025), the National Natural Science Foundation of China (Nos. 21731006 and 21871256), and the Fund of Advanced Energy Science and Technology Guangdong Laboratory (No. DJLTN0200/DJLTN0240).

Return