Journal Home > Volume 16 , Issue 7

Gel polymer electrolytes (GPEs) have attracted extensive attention in lithium-ion batteries due to their high security and excellent electrochemical performance. However, their inferior Li-ion transference number, low room-temperature ionic conductivity, and poor long cycle stability raise challenges in practical applications. Herein, a flexible poly(vinylidene fluoride-co-hexafluoropropylene)-butanedinitrile (PVDF-HFP-SN)-based GPE (PSGPE) is synthesized successfully by a general immersion precipitation method. The resultant PSGPEs have numerous connecting pores to ensure sufficient space for liquid electrolytes. Moreover, the reduced crystallinity of PVDF-HFP and the high polarity of SN can reduce the energy barrier of Li-ions shuttling between pores. The synergistic effect possesses a high ionic conductivity of 1.35 mS·cm−1 at room temperature with a high Li-ion transference number of 0.69. The PVDF-HFP-SN-based GPE is applied in a LiFePO4/graphite battery, which can realize stable cycling performance for 350 cycles and good rate performance at room temperature. These results demonstrate that the novel PSGPE possesses advantage in simplified production process, which can improve the practicability of gel polymer lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries

Show Author's information Ruling HuangRuochen Xu( )Jiangtao ZhangJiayun WangTianyi ZhouMingyi LiuXiaolong Wang( )
Huaneng Clean Energy Research Institute, Beijing 102209, China

Abstract

Gel polymer electrolytes (GPEs) have attracted extensive attention in lithium-ion batteries due to their high security and excellent electrochemical performance. However, their inferior Li-ion transference number, low room-temperature ionic conductivity, and poor long cycle stability raise challenges in practical applications. Herein, a flexible poly(vinylidene fluoride-co-hexafluoropropylene)-butanedinitrile (PVDF-HFP-SN)-based GPE (PSGPE) is synthesized successfully by a general immersion precipitation method. The resultant PSGPEs have numerous connecting pores to ensure sufficient space for liquid electrolytes. Moreover, the reduced crystallinity of PVDF-HFP and the high polarity of SN can reduce the energy barrier of Li-ions shuttling between pores. The synergistic effect possesses a high ionic conductivity of 1.35 mS·cm−1 at room temperature with a high Li-ion transference number of 0.69. The PVDF-HFP-SN-based GPE is applied in a LiFePO4/graphite battery, which can realize stable cycling performance for 350 cycles and good rate performance at room temperature. These results demonstrate that the novel PSGPE possesses advantage in simplified production process, which can improve the practicability of gel polymer lithium-ion batteries.

Keywords: synergistic effect, gel polymer electrolyte, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based, butanedinitrile (SN)

References(41)

[1]

Chen, N.; Dai, Y. J.; Xing, Y.; Wang, L. L.; Guo, C.; Chen, R. J.; Guo, S. J.; Wu, F. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 2017, 10, 1660–1667.

[2]

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries. Energy Environ. Sci. 2011, 4, 3243–3262.

[3]

Li, C.; Zheng, C.; Cao, F.; Zhang, Y. Q.; Xia X. H. The development trend of graphene derivatives. J. Electron. Mater. 2022, 51, 4107–4114.

[4]

Zhang, T. F.; Li, C.; Wang, F.; Noori, A.; Mousavi, M. F.; Xia, X. H.; Zhang, Y. Q. Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 2022, 22, e202200083.

[5]

Zhang, B. H.; Zhang, Y. H.; Zhang, N.; Liu, J.; Cong, L. N.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M.; Xie, H. M. et al. Synthesis and interface stability of polystyrene–poly(ethylene glycol)–polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power Sources 2019, 428, 93–104.

[6]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[7]

Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 2015, 57, 27–30.

[8]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[9]

Wu, X. H.;Pan, K. C.; Jia, M. M.; Ren, Y. F.; He, H. Y.; Zhang, L.; Zhang, S. J. Electrolyte for lithium protection: From liquid to solid. Green Energy Environ. 2019, 4, 360–374.

[10]

Zhang, J. F.; Ma, C.; Liu, J. T.; Chen, L. B.; Pan, A. Q.; Wei, W. F. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J. Membrane Sci. 2016, 509, 138–148.

[11]

Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.

[12]

Zhang, P.; Li, R.; Huang, J.; Liu, B. Y.; Zhou, M. J.; Wen, B. Z.; Xia, Y. G.; Okada, S. Flexible poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte for high-performance lithium-ion batteries. RSC Adv. 2021, 11, 11943–11951.

[13]

Li, W. Y.; Pang, Y.; Liu, J. Y.; Liu, G. H.; Wang, Y. G.; Xia, Y. Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501.

[14]

Liu, Y. L.; Zhao, Y.; Lu, W.; Sun, L. Q.; Lin, L.; Zheng, M.; Sun, X. L.; Xie, H. M. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205.

[15]

Jie, J.; Liu, Y. L.; Cong, L. N.; Zhang, B. H.; Lu, W.; Zhang, X. M.; Liu, J.; Xie, H. M.; Sun, L. Q. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J. Energy Chem. 2020, 49, 80–88.

[16]

Caimi, S.; Wu, H.; Morbidelli, M. PVdF-HFP and ionic-liquid-based, freestanding thin separator for lithium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 5224–5232.

[17]

Cai, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

[18]

Huang, Y.; Liu, B.; Cao, H. J.; Lin, Y. H.; Tang, S. H.; Wang, M. S.; Li, X. Novel gel polymer electrolyte based on matrix of PMMA modified with polyhedral oligomeric silsesquioxane. J. Solid State Electr. 2017, 21, 2291–2299.

[19]

Wang, Q. J.; Song, W. L.; Fan, L. Z.; Shi, Q. Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. J. Power Sources 2015, 295, 139–148.

[20]

Cheng, Q. H.; He, W.; Zhang, X. D.; Li, M.; Song, X. Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries. RSC Adv. 2016, 6, 10250–10265.

[21]

Jia, H.; Onishi, H.; von Aspern, N.; Rodehorst, U.; Rudolf, K.;Billmann, B.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries. J. Power Sources 2018, 397, 343–351.

[22]

Chen, R. J.; Liu, F.; Chen, Y.; Ye, Y. S.; Huang, Y. X.; Wu, F.; Li, L. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 2016, 306, 70–77.

[23]

Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

[24]

Chen, B.; Huang, Z.; Chen, X. T.; Zhao, Y. R.; Xu, Q.; Long, P.; Chen, S. J.; Xu, X. X. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 2016, 210, 905–914.

[25]

Liu, F.; Hashim, N. A.; Liu, Y. T.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membrane Sci. 2011, 375, 1–27.

[26]

Zhang, L. H.; Yin, X. G.; Shen, S. B.; Liu, Y.; Li, T.; Wang, H.; Lv, X. H.; Qin, X. Y.; Chiang, S. W.; Fu, Y. Z. et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition. Nano Lett. 2020, 20, 5662–5669.

[27]

Lu, R. C.; Zhang, B. B.; Cheng, Y. L.; Amin, K.; Yang, C.; Zhou, Q. Y.; Mao, L. J.; Wei, Z. X. Dual-regulation of ions/electrons in a 3D Cu-CuxO host to guide uniform lithium growth for high-performance lithium metal anodes. J. Mater. Chem. A 2021, 9, 10393–10403.

[28]

Zhou, Y. G.; Zhang, X.; Ding, Y.; Bae, J.; Guo, X. L.; Zhou, Y.; Yu, G. H. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 2020, 32, 2003920.

[29]

Liu, W.; Zhang, X. K.; Wu, F.; Xiang, Y. A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 213, 012036.

[30]

Badatya, S.; Kumar, A.; Sharma, C.; Srivastava, A. K.; Chaurasia, J. P.; Gupta, M. K. Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Mater. Lett. 2021, 290, 129493.

[31]

Lu, R. C.; Shokrieh, A.; Li, C. F.; Zhang, B. B.; Amin, K.; Mao, L. J.; Wei, Z. X. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy 2022, 95, 107009.

[32]

Wu, Y. X.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q. G.; Chen, M. H. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84.

[33]

Liu, Y. X.; Hu, R. Z.; Zhang, D. C.; Liu, J. W.; Liu, F.; Cui, J.; Lin, Z. P.; Wu, J. S.; Zhu, M. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 2021, 33, 2004711.

[34]

Wang, G. X.; He, P. G.; Fan, L. Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 2021, 31, 2007198.

[35]

Zheng, Y. W.; Li, X. W.; Li, C. Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Stor. Mater. 2020, 29, 42–51.

[36]

Wang, L. L.; Ma, J.; Wang, C.; Yu, X. Y.; Liu, R.; Jiang, F.; Sun, X. W.; Du, A. B.; Zhou, X. H.; Cui, G. L. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 2019, 6, 1900355.

[37]

Yu, Z.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[38]

Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

[39]

Sun, J. Q.; Yao, X. M.; Li, Y. G.; Zhang, Q. H.; Hou, C. Y.; Shi, Q. W.; Wang, H. Z. Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 2020, 10, 2000709.

[40]

Liu, Z.; Qi, Y.; Lin, Y. X.; Chen, L.; Lu, P.; Chen, L. Q. Interfacial study on solid electrolyte interphase at Li metal anode: Implication for Li dendrite growth. J. Electrochem. Soc. 2016, 163, A592–A598.

[41]

He, M. F.; Guo, R.; Hobold, G. M.; Gao, H. N.; Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl. Acad. Sci. USA 2019, 117, 73–79.

File
12274_2023_5707_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2023
Revised: 21 March 2023
Accepted: 02 April 2023
Published: 28 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was funded by Huaneng Clean Energy Research Institute Found Project (No. TE-22-CERI01).

Return