Journal Home > Volume 16 , Issue 7

Heterostructures based on covalent organic frameworks (COFs) and other two-dimensional (2D) materials attract considerable attention due to their extraordinary properties and tremendous application potential. Substrate effects play a crucial role in the integration of ultrathin COF films onto 2D materials through direct polymerization. In this study, highly ordered monolayer COFs were successfully constructed on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2). High-resolution atomic force microscopy (HR-AFM) imaging clearly reveals the substrate orientation effect in COFs/2D materials heterostructure. Honeycomb networks formed via Schiff-base reaction and boronic acid condensation reaction can epitaxially grow in specific orientations relative to the underlying substrate lattices. This work provides direct evidence for substrate effects in the on-surface synthesis of COFs and paves the way for further investigation into the intrinsic electronic properties of monolayer COFs and the development of multifunctional hybrid devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Substrate orientation effect in covalent organic frameworks/2D materials heterostructure by high-resolution atomic force microscopy

Show Author's information Lu Wang1,2Cheng Lu1,2Huijuan Yan1,2Dong Wang1,2( )
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Heterostructures based on covalent organic frameworks (COFs) and other two-dimensional (2D) materials attract considerable attention due to their extraordinary properties and tremendous application potential. Substrate effects play a crucial role in the integration of ultrathin COF films onto 2D materials through direct polymerization. In this study, highly ordered monolayer COFs were successfully constructed on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2). High-resolution atomic force microscopy (HR-AFM) imaging clearly reveals the substrate orientation effect in COFs/2D materials heterostructure. Honeycomb networks formed via Schiff-base reaction and boronic acid condensation reaction can epitaxially grow in specific orientations relative to the underlying substrate lattices. This work provides direct evidence for substrate effects in the on-surface synthesis of COFs and paves the way for further investigation into the intrinsic electronic properties of monolayer COFs and the development of multifunctional hybrid devices.

Keywords: on-surface synthesis, covalent organic frameworks (COFs), substrate orientation effect, high-resolution atomic force microscopy (HR-AFM)

References(45)

[1]

Zhu, P.; Meunier, V. Electronic properties of two-dimensional covalent organic frameworks. J. Chem. Phys. 2012, 137, 244703.

[2]

Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X. F. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 2011, 23, 4094–4097.

[3]

Wang, M. C.; Ballabio, M.; Wang, M.; Lin, H. H.; Biswal, B. P.; Han, X. C.; Paasch, S.; Brunner, E.; Liu, P.; Chen, M. W. et al. Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 16810–16816.

[4]

Zhou, Y. G.; Wang, Z. G.; Yang, P.; Zu, X. T.; Gao, F. Electronic and optical properties of two-dimensional covalent organic frameworks. J. Mater. Chem. 2012, 22, 16964–16970.

[5]

Chen, L.; Furukawa, K.; Gao, J.; Nagai, A.; Nakamura, T.; Dong, Y. P.; Jiang, D. L. Photoelectric covalent organic frameworks: Converting open lattices into ordered donor–acceptor heterojunctions. J. Am. Chem. Soc. 2014, 136, 9806–9809.

[6]

Keller, N.; Bein, T. Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 2021, 50, 1813–1845.

[7]

Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Graphene-like single-layered covalent organic frameworks: Synthesis strategies and application prospects. Adv. Mater. 2014, 26, 6912–6920.

[8]

Dienstmaier, J. F.; Gigler, A. M.; Goetz, A. J.; Knochel, P.; Bein, T.; Lyapin, A.; Reichlmaier, S.; Heckl, W. M.; Lackinger, M. Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 2011, 5, 9737–9745.

[9]

Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943–2945.

[10]

Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

[11]

Xu, L. R.; Zhou, X.; Yu, Y. X.; Tian, W. Q.; Ma, J.; Lei, S. B. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 2013, 7, 8066–8073.

[12]

Hu, Y.; Goodeal, N.; Chen, Y.; Ganose, A. M.; Palgrave, R. G.; Bronstein, H.; Blunt, M. O. Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions. Chem. Commun. 2016, 52, 9941–9944.

[13]

Yu, Y. X.; Lin, J. B.; Wang, Y.; Zeng, Q. D.; Lei, S. B. Room temperature on-surface synthesis of two-dimensional imine polymers at the solid/liquid interface: Concentration takes control. Chem. Commun. 2016, 52, 6609–6612.

[14]

Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 2009, 4456–4458.

[15]

Faury, T.; Clair, S.; Abel, M.; Dumur, F.; Gigmes, D.; Porte, L. Sequential linking to control growth of a surface covalent organic framework. J. Phys. Chem. C 2012, 116, 4819–4823.

[16]

Morchutt, C.; Björk, J.; Straßer, C.; Starke, U.; Gutzler, R.; Kern, K. Interplay of chemical and electronic structure on the single-molecule level in 2D polymerization. ACS Nano 2016, 10, 11511–11518.

[17]

Galeotti, G.; De Marchi, F.; Hamzehpoor, E.; MacLean, O.; Rajeswara Rao, M.; Chen, Y.; Besteiro, L. V.; Dettmann, D.; Ferrari, L.; Frezza, F. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 2020, 19, 874–880.

[18]

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

[19]

Cui, D. L.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: Design, synthesis and application. Chem. Soc. Rev. 2020, 49, 2020–2038.

[20]

Liang, L. B.; Zhu, P.; Meunier, V. Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks. J. Chem. Phys. 2015, 142, 184708.

[21]

Rizzo, D. J.; Dai, Q. Q.; Bronner, C.; Veber, G.; Smith, B. J.; Matsumoto, M.; Thomas, S.; Nguyen, G. D.; Forrester, P. R.; Zhao, W. et al. Revealing the local electronic structure of a single-layer covalent organic framework through electronic decoupling. Nano Lett. 2020, 20, 963–970.

[22]

Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228–231.

[23]

Xu, L. R.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S. B.; Liu, Z. F. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem., Int. Ed. 2014, 53, 9564–9568.

[24]

Sun, B.; Zhu, C. H.; Liu, Y.; Wang, C.; Wan, L. J.; Wang, D. Oriented covalent organic framework film on graphene for robust ambipolar vertical organic field-effect transistor. Chem. Mater. 2017, 29, 4367–4374.

[25]

Zhong, Y.; Cheng, B. R.; Park, C.; Ray, A.; Brown, S.; Mujid, F.; Lee, J. U.; Zhou, H.; Suh, J.; Lee, K. H. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366, 1379–1384.

[26]

Balch, H. B.; Evans, A. M.; Dasari, R. R.; Li, H.; Li, R. F.; Thomas, S.; Wang, D. Q.; Bisbey, R. P.; Slicker, K.; Castano, I. et al. Electronically coupled 2D polymer/MoS2 heterostructures. J. Am. Chem. Soc. 2020, 142, 21131–21139.

[27]

Evans, A. M.; Giri, A.; Sangwan, V. K.; Xun, S. N.; Bartnof, M.; Torres-Castanedo, C. G.; Balch, H. B.; Rahn, M. S.; Bradshaw, N. P.; Vitaku, E. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 2021, 20, 1142–1148.

[28]

Beagle, L. K.; Moore, D. C.; Kim, G.; Tran, L. D.; Miesle, P.; Nguyen, C.; Fang, Q. Y.; Kim, K. H.; Prusnik, T. A.; Newburger, M. et al. Microwave facilitated covalent organic framework/transition metal dichalcogenide heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 46876–46883.

[29]

Sun, B.; Li, J.; Dong, W. L.; Wu, M. L.; Wang, D. Selective growth of covalent organic framework ultrathin films on hexagonal boron nitride. J. Phys. Chem. C 2016, 120, 14706–14711.

[30]

Xiong, Y. F.; Liao, Q. B.; Huang, Z. P.; Huang, X.; Ke, C.; Zhu, H. T.; Dong, C. Y.; Wang, H. S.; Xi, K.; Zhan, P. et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater. 2020, 32, 1907242.

[31]

Evans, A. M.; Strauss, M. J.; Corcos, A. R.; Hirani, Z.; Ji, W.; Hamachi, L. S.; Aguilar-Enriquez, X.; Chavez, A. D.; Smith, B. J.; Dichtel, W. R. Two-dimensional polymers and polymerizations. Chem. Rev. 2022, 122, 442–564.

[32]

Kong, H. H.; Yang, S.; Gao, H. Y.; Timmer, A.; Hill, J. P.; Arado, O. D.; Mönig, H.; Huang, X. Y.; Tang, Q.; Ji, Q. M. et al. Substrate-mediated C–C and C–H coupling after dehalogenation. J. Am. Chem. Soc. 2017, 139, 3669–3675.

[33]

Koudia, M.; Nardi, E.; Siri, O.; Abel, M. On-surface synthesis of covalent coordination polymers on micrometer scale. Nano Res. 2017, 10, 933–940.

[34]

Ren, J. D.; Larkin, E.; Delaney, C.; Song, Y.; Jin, X.; Amirjalayer, S.; Bakker, A.; Du, S. X.; Gao, H. Y.; Zhang, Y. Y. et al. Chemistry of 4-[(4-bromophenyl)ethynyl]pyridine at metal surfaces studied by STM. Chem. Commun. 2018, 54, 9305–9308.

[35]

Lewis, E. A.; Marcinkowski, M. D.; Murphy, C. J.; Liriano, M. L.; Therrien, A. J.; Pronschinske, A.; Sykes, E. C. H. Controlling selectivity in the Ullmann reaction on Cu(111). Chem. Commun. 2017, 53, 7816–7819.

[36]

Dong, W. L.; Wang, L.; Ding, H. M.; Zhao, L.; Wang, D.; Wang, C.; Wan, L. J. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks. Langmuir 2015, 31, 11755–11759.

[37]

Yue, J. Y.; Mo, Y. P.; Li, S. Y.; Dong, W. L.; Chen, T.; Wang, D. Simultaneous construction of two linkages for the on-surface synthesis of imine-boroxine hybrid covalent organic frameworks. Chem. Sci. 2017, 8, 2169–2174.

[38]

Duong, D. L.; Yun, S. J.; Lee, Y. H. Van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830.

[39]

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

[40]

Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

[41]

Wang, L.; Yue, Q. Y.; Pei, C. J.; Fan, H. C.; Dai, J.; Huang, X.; Li, H.; Huang, W. Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Res. 2020, 13, 959–966.

[42]

Wang, H. M.; Li, C. H.; Fang, P. F.; Zhang, Z. L.; Zhang, J. Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127.

[43]

Stepanow, S.; Lin, N.; Barth, J. V.; Kern, K. Surface-template assembly of two-dimensional metal–organic coordination networks. J. Phys. Chem. B 2006, 110, 23472–23477.

[44]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[45]

Korolkov, V. V.; Svatek, S. A.; Summerfield, A.; Kerfoot, J.; Yang, L. X.; Taniguchi, T.; Watanabe, K.; Champness, N. R.; Besley, N. A.; Beton, P. H. Van der Waals-induced chromatic shifts in hydrogen-bonded two-dimensional porphyrin arrays on boron nitride. ACS Nano 2015, 9, 10347–10355.

File
12274_2023_5704_MOESM1_ESM.pdf (720.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2023
Revised: 23 March 2023
Accepted: 02 April 2023
Published: 10 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21972147 and 22132007), the Key Research Program of the Chinese Academy of Sciences (No. XDPB01). The Supercomputing Environment of the Chinese Academy of Sciences is acknowledged for providing computational resources.

Return