AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids

Lian Ma1Qinghong Geng1Longlong Fan1Jun-Xuan Li1Dawei Du2Junli Bai2,3Cuiling Li1,2,4( )
Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Binzhou Institute of Technology, Binzhou 256600, China
Show Author Information

Graphical Abstract

Polyaniline (PANI)/CuO nanosheets (NSs) hybrid electrocatalysts are developed in order to achieve superior C2+ selectivity by imparting polyimide functional component to the CuO NSs. PANI/CuO NSs-25 sample exhibits outperforming electrochemical CO2 reduction reaction (CO2RR) performance with Faradaic efficiency (FE) for C2+ product up to 66.4% at −1.6 V vs. reversible hydrogen electrode (RHE) and no decay of C2+ selectivity during a time period of 92 h.

Abstract

Electrochemically converting CO2 to value-added multi-carbon (C2+) fuels and chemicals is a favorable way to achieve carbon neutrality. Herein, polyaniline/CuO nanosheets (PANI/CuO NSs) hybrid electrocatalysts are developed in order to achieve superior C2+ selectivity by imparting PANI functional component to the CuO NSs. The decorated PANI nanoparticles (NPs) can effectively stabilize the *CO intermediates and increase their coverage on the active Cu sites, which facilitates the C–C coupling to form multi-carbon products. Benefiting from the synergetic effect of PANI and CuO NSs, best Faradaic efficiency (FE) for C2+ product up to 66.4% at −1.6 V vs. reversible hydrogen electrode (RHE) in a H-cell measurement and 60.0% at 400 mA·cm−2 in a flow cell measurement are demonstrated by PANI/CuO NSs-25 sample. More importantly, the C2+ selectivity keeps stable even in a continuous measurement time period of 92 h in H-cell measurement. The present study may provide more insights for designing efficient hybrid materials toward superior C2+ production from electrocatalytic CO2 reduction.

Electronic Supplementary Material

Download File(s)
12274_2023_5703_MOESM1_ESM.pdf (7.1 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[3]

Jordaan, S. M.; Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 2021, 4, 915–920.

[4]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[5]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[6]
Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.
[7]

Wang, X.; Wang, Z. Y.; García De Arquer, F. P.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

[8]

Li, M. H.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. P. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 2023, 10, 2204579.

[9]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[10]

Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

[11]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[12]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[13]

Kong, X. D.; Zhao, J. K.; Ke, J. W.; Wang, C.; Li, S. J.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. G. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 2022, 22, 3801–3808.

[14]

Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem., Int. Ed. 2013, 52, 7282–7285.

[15]

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

[16]

Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

[17]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ Fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[18]

Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.

[19]

O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Cheong, S.; Gooding, J. J.; Tilley, R. D.; Schuhmann, W. Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 2019, 141, 14093–14097.

[20]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[21]

Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.

[22]

Baek, Y.; Song, H.; Hong, D.; Wang, S.; Lee, S.; Joo, Y. C.; Lee, G. D.; Oh, J. Electrochemical carbon dioxide reduction on copper-zinc alloys: Ethanol and ethylene selectivity analysis. J. Mater. Chem. A 2022, 10, 9393–9401.

[23]

Zhang, G.; Zhao, Z. J.; Cheng, D. F.; Li, H. M.; Yu, J.; Wang, Q. Z.; Gao, H.; Guo, J. Y.; Wang, H. Y.; Ozin, G. A. et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 2021, 12, 5745.

[24]

Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

[25]

Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898.

[26]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[27]

Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.

[28]

Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

[29]

Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.

[30]

Li, P. S.; Lu, X.; Wu, Z. S.; Wu, Y. S.; Malpass-Evans, R.; McKeown, N. B.; Sun, X. M.; Wang, H. L. Acid-base interaction enhancing oxygen tolerance in electrocatalytic carbon dioxide reduction. Angew. Chem., Int. Ed. 2020, 59, 10918–10923.

[31]

Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

[32]

Jia, S. Q.; Zhu, Q. G.; Chu, M. G.; Han, S. T.; Feng, R. T.; Zhai, J. X.; Xia, W.; He, M. Y.; Wu, H. H.; Han, B. X. Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 10977–10982.

[33]

Kebiche, H.; Poncin-Epaillard, F.; Haddaoui, N.; Debarnot, D. A route for the synthesis of polyaniline-based hybrid nanocomposites. J. Mater. Sci. 2020, 55, 5782–5794.

[34]

Cai, K. W.; Zuo, S. X.; Luo, S. P.; Yao, C.; Liu, W. J.; Ma, J. F.; Mao, H. H.; Li, Z. Y. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 2016, 6, 95965–95972.

[35]

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

[36]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[37]

Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

[38]

Lyu, Z. H.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 1909–1915.

[39]

Lyu, Z. H.; Xie, M. H.; Aldama, E.; Zhao, M.; Qiu, J. C.; Zhou, S.; Xia, Y. N. Au@Cu core–shell nanocubes with controllable sizes in the range of 20–30 nm for applications in catalysis and plasmonics. ACS Appl. Nano Mater. 2019, 2, 1533–1540.

[40]

Wang, Z. L.; Zhang, L.; Schülli, T. U.; Bai, Y.; Monny, S. A.; Du, A. J.; Wang, L. Z. Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew. Chem., Int. Ed. 2019, 58, 17604–17609.

[41]

Lv, W. B.; Li, L.; Meng, Q. H.; Zhang, X. T. Molybdenum-doped CuO nanosheets on Ni foams with extraordinary specific capacitance for advanced hybrid supercapacitors. J. Mater. Sci. 2020, 55, 2492–2502.

[42]

Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

[43]

Ling, P. H.; Zhang, Q.; Cao, T. T.; Gao, F. Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew. Chem., Int. Ed. 2018, 57, 6819–6824.

[44]

Dan, Z. H.; Yang, Y. L.; Qin, F. X.; Wang, H.; Chang, H. Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 2018, 11, 446.

[45]

Sreedhar, B.; Sairam, M.; Chattopadhyay, D. K.; Mitra, P. P.; Rao, D. V. M. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J. Appl. Polym. Sci. 2006, 101, 499–508.

[46]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[47]

Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.

[48]

Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2023, 62, e202217071.

[49]

Wei, X.; Yin, Z. L.; Lyu, K.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.

[50]

Vijayakumar, A.; Zhao, Y.; Zou, J.; Wang, K.; Lee, C.-Y.; MacFarlane, D. R.; Wang, C.; Wallace, G. G. A self-assembled CO2 reduction electrocatalyst: posy-bouquest-shaped gold-polyaniline core-shell nanocomposite. ChemSusChem 2020, 13, 5023–5030.

[51]

Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142.

Nano Research
Pages 9065-9072
Cite this article:
Ma L, Geng Q, Fan L, et al. Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids. Nano Research, 2023, 16(7): 9065-9072. https://doi.org/10.1007/s12274-023-5703-1
Topics:

932

Views

29

Crossref

26

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 15 February 2023
Revised: 27 March 2023
Accepted: 30 March 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return