Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemically converting CO2 to value-added multi-carbon (C2+) fuels and chemicals is a favorable way to achieve carbon neutrality. Herein, polyaniline/CuO nanosheets (PANI/CuO NSs) hybrid electrocatalysts are developed in order to achieve superior C2+ selectivity by imparting PANI functional component to the CuO NSs. The decorated PANI nanoparticles (NPs) can effectively stabilize the *CO intermediates and increase their coverage on the active Cu sites, which facilitates the C–C coupling to form multi-carbon products. Benefiting from the synergetic effect of PANI and CuO NSs, best Faradaic efficiency (FE) for C2+ product up to 66.4% at −1.6 V vs. reversible hydrogen electrode (RHE) in a H-cell measurement and 60.0% at 400 mA·cm−2 in a flow cell measurement are demonstrated by PANI/CuO NSs-25 sample. More importantly, the C2+ selectivity keeps stable even in a continuous measurement time period of 92 h in H-cell measurement. The present study may provide more insights for designing efficient hybrid materials toward superior C2+ production from electrocatalytic CO2 reduction.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Jordaan, S. M.; Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 2021, 4, 915–920.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.
Wang, X.; Wang, Z. Y.; García De Arquer, F. P.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.
Li, M. H.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. P. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 2023, 10, 2204579.
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.
Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.
Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.
Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.
Kong, X. D.; Zhao, J. K.; Ke, J. W.; Wang, C.; Li, S. J.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. G. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 2022, 22, 3801–3808.
Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem., Int. Ed. 2013, 52, 7282–7285.
Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.
Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.
Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ Fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.
Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.
O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Cheong, S.; Gooding, J. J.; Tilley, R. D.; Schuhmann, W. Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 2019, 141, 14093–14097.
Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.
Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.
Baek, Y.; Song, H.; Hong, D.; Wang, S.; Lee, S.; Joo, Y. C.; Lee, G. D.; Oh, J. Electrochemical carbon dioxide reduction on copper-zinc alloys: Ethanol and ethylene selectivity analysis. J. Mater. Chem. A 2022, 10, 9393–9401.
Zhang, G.; Zhao, Z. J.; Cheng, D. F.; Li, H. M.; Yu, J.; Wang, Q. Z.; Gao, H.; Guo, J. Y.; Wang, H. Y.; Ozin, G. A. et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 2021, 12, 5745.
Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.
Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898.
Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.
Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.
Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.
Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.
Li, P. S.; Lu, X.; Wu, Z. S.; Wu, Y. S.; Malpass-Evans, R.; McKeown, N. B.; Sun, X. M.; Wang, H. L. Acid-base interaction enhancing oxygen tolerance in electrocatalytic carbon dioxide reduction. Angew. Chem., Int. Ed. 2020, 59, 10918–10923.
Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.
Jia, S. Q.; Zhu, Q. G.; Chu, M. G.; Han, S. T.; Feng, R. T.; Zhai, J. X.; Xia, W.; He, M. Y.; Wu, H. H.; Han, B. X. Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 10977–10982.
Kebiche, H.; Poncin-Epaillard, F.; Haddaoui, N.; Debarnot, D. A route for the synthesis of polyaniline-based hybrid nanocomposites. J. Mater. Sci. 2020, 55, 5782–5794.
Cai, K. W.; Zuo, S. X.; Luo, S. P.; Yao, C.; Liu, W. J.; Ma, J. F.; Mao, H. H.; Li, Z. Y. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 2016, 6, 95965–95972.
Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.
Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.
Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.
Lyu, Z. H.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 1909–1915.
Lyu, Z. H.; Xie, M. H.; Aldama, E.; Zhao, M.; Qiu, J. C.; Zhou, S.; Xia, Y. N. Au@Cu core–shell nanocubes with controllable sizes in the range of 20–30 nm for applications in catalysis and plasmonics. ACS Appl. Nano Mater. 2019, 2, 1533–1540.
Wang, Z. L.; Zhang, L.; Schülli, T. U.; Bai, Y.; Monny, S. A.; Du, A. J.; Wang, L. Z. Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew. Chem., Int. Ed. 2019, 58, 17604–17609.
Lv, W. B.; Li, L.; Meng, Q. H.; Zhang, X. T. Molybdenum-doped CuO nanosheets on Ni foams with extraordinary specific capacitance for advanced hybrid supercapacitors. J. Mater. Sci. 2020, 55, 2492–2502.
Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.
Ling, P. H.; Zhang, Q.; Cao, T. T.; Gao, F. Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew. Chem., Int. Ed. 2018, 57, 6819–6824.
Dan, Z. H.; Yang, Y. L.; Qin, F. X.; Wang, H.; Chang, H. Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 2018, 11, 446.
Sreedhar, B.; Sairam, M.; Chattopadhyay, D. K.; Mitra, P. P.; Rao, D. V. M. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J. Appl. Polym. Sci. 2006, 101, 499–508.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.
Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2023, 62, e202217071.
Wei, X.; Yin, Z. L.; Lyu, K.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.
Vijayakumar, A.; Zhao, Y.; Zou, J.; Wang, K.; Lee, C.-Y.; MacFarlane, D. R.; Wang, C.; Wallace, G. G. A self-assembled CO2 reduction electrocatalyst: posy-bouquest-shaped gold-polyaniline core-shell nanocomposite. ChemSusChem 2020, 13, 5023–5030.
Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142.