Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
TiO2 has been explored in hybrid magnesium-lithium batteries (HMLBs) due to the advantages of low self-discharge and small volume expansion during ion insertion. However, how to improve the inherently low ionic and electrical conductivity of TiO2 is the problem that needs to be solved. In this work, a smart strategy is adopted to prepare cobalt-doped TiO2@C (Co4+-TiO2@C) hierarchical nanocomposite derived from Co(II)(OH)n@Ti3C2. Compared with TiO2@C (without cobalt doping), Co4+-TiO2@C shows the highest specific capacity (154.7 mAh·g−1 at 0.1 A·g−1 after 200 cycles) and extraordinary rate performance in HMLBs. The excellent electrochemical performance of Co4+-TiO2@C is ascribed to the synergistic effect of the hierarchical structure and cobalt-doping. Both experimental results and density functional theory (DFT) calculation reveal that the cobalt-doping has effectively improved the electronic conductivity and reduced the Li+ migration barrier. This work provides a new insight to design TiO2-based cathode materials with high-performance in HMLBs.
Li, X. H.; Tang, Y. K.; Liu, L.; Zhang, Y.; Sheng, R.; NuLi, Y. N. Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J. Colloid Interface Sci. 2022, 608, 2455–2462.
Li, Y. Q.; Zuo, P. J.; Zhang, N. B.; Yin, X. C.; Li, R. N.; He, M. X.; Huo, H.; Ma, Y. L.; Du, C. Y.; Gao, Y. Z. et al. Improving electrochemical performance of rechargeable magnesium batteries with conditioning-free Mg-Cl complex electrolyte. Chem. Eng. J. 2021, 403, 126398.
Sun, T. J.; Du, H. H.; Zheng, S. B.; Tao, Z. L. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery. J. Power Sources 2021, 515, 230643.
Xue, X. L.; Song, X. M.; Yan, W.; Jiang, M. H.; Li, F. J.; Zhang, X. L.; Tie, Z. X.; Jin, Z. Cooperative cationic and anionic redox reactions in ultrathin polyvalent metal selenide nanoribbons for high-performance electrochemical magnesium-ion storage. ACS Appl. Mater. Interfaces 2022, 14, 48734–48742.
Xue, X. L.; Song, X. M.; Tao, A. Y.; Yan, W.; Zhang, X. L.; Tie, Z. X.; Jin, Z. Boosting the cycling stability of rechargeable magnesium batteries by regulating the compatibility between nanostructural metal sulfide cathodes and non-nucleophilic electrolytes. Nano Res. 2023, 16, 2399–2408.
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.
Ni, L. S.; Guo, R. T.; Fang, S. S.; Chen, J.; Gao, J. Q.; Mei, Y.; Zhang, S.; Deng, W. T.; Zou, G. Q.; Hou, H. S. et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience 2022, 2, 116–124.
Cheng, Y. W.; Choi, D. W.; Han, K. S.; Mueller, K. T.; Zhang, J. G.; Sprenkle, V. L.; Liu, J.; Li, G. S. Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes. Chem. Commun. 2016, 52, 5379–5382.
Gao, T.; Han, F. D.; Zhu, Y. J.; Suo, L. M.; Luo, C.; Xu, K.; Wang, C. S. Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 2015, 5, 1401507.
Wang, X. S.; Ding, J. Y.; Chen, J. T.; Xue, M. Q. Improved Li+ diffusion enabled by SEI film in a high-energy-density hybrid magnesium-ion battery. J. Power Sources 2019, 441, 227190.
Xue, X. L.; Chen, R. P.; Song, X. M.; Tao, A. Y.; Yan, W.; Kong, W. H.; Jin, Z. Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries. Adv. Funct. Mater. 2021, 31, 2009394.
Wu, D. Z.; Zhuang, Y. C.; Wang, F.; Yang, Y.; Zeng, J.; Zhao, J. B. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res 2023, 16, 4880–4887.
Yoo, H. D.; Liang, Y. L.; Li, Y. F.; Yao, Y. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 2015, 7, 7001–7007.
Xu, Y. N.; Xu, C.; An, Q. Y.; Wei, Q. L.; Sheng, J. Z.; Xiong, F. Y.; Pei, C. Y.; Mai, L. Q. Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. J. Mater. Chem. A 2017, 5, 13950–13956.
Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060–17066.
Wang, Y. R.; Wang, C. X.; Yi, X.; Hu, Y.; Wang, L.; Ma, L. B.; Zhu, G. Y.; Chen, T.; Jin, Z. Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ Co-intercalation in VS4 nanodendrites. Energy Storage Mater. 2019, 23, 741–748.
Song, T.; Paik, U. TiO2 as an active or supplemental material for lithium batteries. J. Mater. Chem. A 2016, 4, 14–31.
Ran, K.; Zhang, Z. D.; Wang, W. J.; Hou, X. W.; Wang, S.; Fang, Y.; Song, J. L.; Xue, W. D.; Zhao, R. Ultra-thin graphene cube framework@TiO2 heterojunction as high-performance anode materials for lithium ion batteries. J. Colloid Interface Sci. 2022, 625, 100–108.
Lan, K.; Liu, L.; Zhang, J. Y.; Wang, R. C.; Zu, L. H.; Lv, Z. R.; Wei, Q. L.; Zhao, D. Y. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 2021, 143, 14097–14105.
Li, Y.; Wang, S.; He, Y. B.; Tang, L. K.; Kaneti, Y. V.; Lv, W.; Lin, Z. Q.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Li-ion and Na-ion transportation and storage properties in various sized TiO2 spheres with hierarchical pores and high tap density. J. Mater. Chem. A 2017, 5, 4359–4367.
Khanna, S.; Marathey, P.; Vanpariya, A.; Paneliya, S.; Mukhopadhyay, I. In-situ preparation of titania/graphene nanocomposite via a facile sol–gel strategy: A promising anodic material for Li-ion batteries. Mater. Lett. 2021, 300, 130143.
Rehman, A. U.; Ali, G.; Badshah, A.; Chung, K. Y.; Nam, K. W.; Jawad, M.; Arshad, M.; Abbas, S. M. Superior shuttling of lithium and sodium ions in manganese-doped titania@functionalized multiwall carbon nanotube anodes. Nanoscale 2017, 9, 9859–9871.
Rehman, A. U.; Ali, G.; Bilal, M.; Zahid, M.; Bashir, S.; Kalam, A.; Iqbal, J.; Qayyum, M. A.; Wageh, S.; Abbas, S. M. Transformation of diffusive to capacitive kinetics in nanoscale modified Co-TiO2@CNTs composites safeguarding steady reversible capacity as sodium-ion battery anode. J. Alloys Compd. 2022, 902, 163772.
Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.
Luo, L.; Zhou, K. Q.; Lian, R. Q.; Lu, Y. Z.; Zhen, Y. C.; Wang, J. S.; Mathur, S.; Hong, Z. S. Cation-deficient TiO2(B) nanowires with protons charge compensation for regulating reversible magnesium storage. Nano Energy 2020, 72, 104716.
Cai, X. Y.; Xu, Y. N.; An, Q. Y.; Jiang, Y. L.; Liu, Z. A.; Xiong, F. Y.; Zou, W. Y.; Zhang, G.; Dai, Y. H.; Yu, R. H. et al. MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chem. Eng. J. 2021, 418, 128491.
Wang, Y. R.; Xue, X. L.; Liu, P. Y.; Wang, C. X.; Yi, X.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Chen, R. P.; Chen, T. et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2−x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 2018, 12, 12492–12502.
Li, J.; Cai, Y. J.; Yao, X.; Tian, H. L.; Su, Z. Europium modified TiO2 as a high-rate long-cycle life anode material for lithium-ion batteries. New J. Chem. 2022, 46, 2266–2271.
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.
Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.
Hui, X. B.; Ge, X. L.; Zhao, R. Z.; Li, Z. Q.; Yin, L. W. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190.
Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.
Tian, Y. P.; Yang, C. H.; Que, W. X.; He, Y. C.; Liu, X. B.; Luo, Y. Y.; Yin, X. T.; Kong, L. B. Ni foam supported quasi-core–shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources 2017, 369, 78–86.
Li, X. H.; Tang, Y. K.; Liu, L.; Gao, Y.; Zhu, C. X.; NuLi, Y. N.; Yang, T. Y. 2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium-lithium-ion batteries. J. Mater. Sci. 2021, 56, 2464–2473.
Ceballos-Chuc, M. C.; Ramos-Castillo, C. M.; Alvarado-Gil, J. J.; Oskam, G.; Rodríguez-Gattorno, G. Influence of brookite impurities on the Raman spectrum of TiO2 anatase nanocrystals. J. Phys. Chem. C 2018, 122, 19921–19930.
Loan, T. T.; Long, N. N. Effect of Co2+ doping on Raman spectra and the phase transformation of TiO2: Co2+ nanowires. J. Phys. Chem. Solids 2019, 124, 336–342.
Mohammed, M. A.; Uday, M. B.; Izman, S. Enhanced thermoelectric performance of Ca3Co4O9 doped with aluminum. J. Mater. Sci.: Mater. Electron. 2020, 31, 16569–16582.
Huang, Y. N.; Zhao, B. C.; Ang, R.; Lin, S.; Huang, Z. H.; Tan, S. G.; Liu, Y.; Song, W. H.; Sun, Y. P. Enhanced thermoelectric performance and room-temperature spin-state transition of Co4+ ions in the Ca3Co4−xRhxO9 system. J. Phys. Chem. C 2013, 117, 11459–11470.
Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.
Gao, X. T.; Xie, Y.; Zhu, X. D.; Sun, K. N.; Xie, X. M.; Liu, Y. T.; Yu, J. Y.; Ding, B. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 2018, 14, 1802443.
Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S. N.; Chen, Y. X.; Chen, X. H.; Song, H. H. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 2019, 29, 1901127.
Kumari, R.; Singh, F.; Yadav, B. S.; Kotnala, R. K.; Peta, K. R.; Tyagi, P. K.; Kumar, S.; Puri, N. K. Ion irradiation-induced, localized sp2 to sp3 hybridized carbon transformation in walls of multiwalled carbon nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2017, 412, 115–122.
Xu, M.; Lei, S. L.; Qi, J.; Dou, Q. Y.; Liu, L. Y.; Lu, Y. L.; Huang, Q.; Shi, S. Q.; Yan, X. B. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018, 12, 3733–3740.