AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Atomically dispersed materials: Ideal catalysts in atomic era

Tao GanDingsheng Wang( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

This review provides an overview of the recent progress in the development and applications of atomically dispersed catalysts in various fields. The key synthetic strategies were summarized and their unique properties and advantages were highlighted. Furthermore, it discussed the challenges and future directions in this field.

Abstract

Catalysts can accelerate the chemical reaction rate and effectively promote the molecules transformation, which is of great significance in the research of chemical industry and material science. The extreme utilization of reactive sites has led to the emergence and development of atomically dispersed materials (ADMs). The highly active coordination unsaturated metal sites and fully utilized metal atoms make ADMs show great potential in catalytic reactions. The adjustment of coordination environment and electronic structure provides more possibilities for constructing reactive centers with different properties. This review summarized the application and research progress of ADMs in different fields. The design strategy and structure–activity relationship of ADMs for specific reactions were summarized and analyzed. Moreover, we also provided advices for the challenges and opportunities faced by ADMs in catalytic reactions.

References

[1]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[2]

Smil, V. Detonator of the population explosion. Nature 1999, 400, 415–415.

[3]

Busico, V.; Cipullo, R.; Mingione, A.; Rongo, L. Accelerating the research approach to Ziegler–Natta catalysts. Ind. Eng. Chem. Res. 2016, 55, 2686–2695.

[4]

Huang, C. Y.; Shan, W. P.; Lian, Z. H.; Zhang, Y.; He, H. Recent advances in three-way catalysts of natural gas vehicles. Catal. Sci. Technol. 2020, 10, 6407–6419.

[5]

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[6]

Gan, T.; Chu, X. F.; Qi, H.; Zhang, W. X.; Zou, Y. C.; Yan, W. F.; Liu, G. Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support. Appl. Catal. B: Environ. 2019, 257, 117943.

[7]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[8]

Li, D. D.; Xu, F.; Tang, X.; Dai, S.; Pu, T. C.; Liu, X. L.; Tian, P. F.; Xuan, F. Z.; Xu, Z.; Wachs, I. E. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 2022, 5, 99–108.

[9]

Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564.

[10]

Chen, G. W.; Fang, L. Z.; Li, T.; Xiang, Y. Z. Ultralow-loading Pt/Zn hybrid cluster in zeolite HZSM-5 for efficient dehydroaromatization. J. Am. Chem. Soc. 2022, 144, 11831–11839.

[11]
Zhang, Q.; Gao, S. Q.; Yu, J. H. Metal sites in zeolites: Synthesis, characterization, and catalysis. Chem. Rev., in press, https://doi.org/10.1021/acs.chemrev.2c00315.
[12]

Hu, Z. P.; Qin, G. Q.; Han, J. F.; Zhang, W. N.; Wang, N.; Zheng, Y. J.; Jiang, Q. K.; Ji, T.; Yuan, Z. Y.; Xiao, J. P. et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. J. Am. Chem. Soc. 2022, 144, 12127–12137.

[13]

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

[14]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[15]

Zhang, W. J.; Jing, P.; Du, J.; Wu, S. J.; Yan, W. F.; Liu, G. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites. Chin. J. Catal. 2022, 43, 2231–2239.

[16]

Zhou, A. W.; Guo, R. M.; Zhou, J.; Dou, Y. B.; Chen, Y.; Li, J. R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustainable Chem. Eng. 2018, 6, 2103–2111.

[17]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[18]

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, 64, 642–650.

[19]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[20]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[21]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[22]

Taylor, H. S. A theory of the catalytic surface. Proc. Roy. Soc. A Mathemat. Phys. Eng. Sci. 1925, 108, 105–111.

[23]

Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem., Int. Ed. 2007, 46, 8593–8596.

[24]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[25]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[26]

Zhang, T. Single-atom catalysis: Far beyond the matter of metal dispersion. Nano Lett. 2021, 21, 9835–9837.

[27]

Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

[28]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[29]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[30]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[31]
Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater., in press, https://doi.org/10.1002/adma.202209654.
[32]

Jin, J.; Han, X.; Fang, Y. Y.; Zhang, Z. D.; Li, Y. P.; Zhang, T. Y.; Han, A. J.; Liu, J. F. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Adv. Funct. Mater. 2022, 32, 2109218.

[33]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[34]

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

[35]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[36]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[37]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[38]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[39]

Sun, Z. G.; Zhang, H. J.; Cao, L. L.; Liu, X. K.; Wu, D.; Shen, X. Y.; Zhang, X.; Chen, Z. H.; Ru, S.; Zhu, X. Y. et al. Understanding synergistic catalysis on Cu-Se dual atom sites via operando X-ray absorption spectroscopy in oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202217719.

[40]

Liang, X. M.; Wang, H. J.; Zhang, C.; Zhong, D. C.; Lu, T. B. Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Appl. Catal. B: Environ. 2023, 322, 122073.

[41]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[42]

Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 2022, 5, 485–493.

[43]

Zhang, L. L.; Liu, L.; Pan, Z. Y.; Zhang, R.; Gao, Z. Y.; Wang, G. M.; Huang, K. K.; Mu, X. Y.; Bai, F. Q.; Wang, Y. et al. Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions. Nat. Energy 2022, 7, 1042–1051.

[44]

Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

[45]

Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

[46]

Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.

[47]

An, Z.; Zhang, Z. L.; Huang, Z. Y.; Han, H. B.; Song, B. B.; Zhang, J.; Ping, Q.; Zhu, Y. R.; Song, H. Y.; Wang, B. et al. Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 2022, 13, 5467.

[48]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[49]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[50]

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

[51]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[52]

Yan, X. L.; Gan, T.; Shi, S. Z.; Du, J.; Xu, G. H.; Zhang, W. X.; Yan, W. F.; Zou, Y. C.; Liu, G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal. Sci. Technol. 2021, 11, 6369–6373.

[53]

Zheng, B.; Gan, T.; Shi, S. Z.; Wang, J. H.; Zhang, W. X.; Zhou, X.; Zou, Y. C.; Yan, W. F.; Liu, G. Exsolution of iron oxide on LaFeO3 perovskite: A robust heterostructured support for constructing self-adjustable Pt-based room-temperature CO oxidation catalysts. ACS Appl. Mater. Interfaces 2021, 13, 27029–27040.

[54]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[55]

Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H. T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Bimetallic synergy in cobalt-palladium nanocatalysts for CO oxidation. Nat. Catal. 2018, 2, 78–85.

[56]

Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

[57]

Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824–833.

[58]

Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt–CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

[59]

Kothari, M.; Jeon, Y.; Miller, D. N.; Pascui, A. E.; Kilmartin, J.; Wails, D.; Ramos, S.; Chadwick, A.; Irvine, J. T. S. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. Nat. Chem. 2021, 13, 677–682.

[60]

Wang, Y.; Ren, P. J.; Hu, J. T.; Tu, Y. C.; Gong, Z. M.; Cui, Y.; Zheng, Y. P.; Chen, M. S.; Zhang, W. J.; Ma, C. et al. Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature. Nat. Commun. 2021, 12, 5814.

[61]

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

[62]

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

[63]

Fang, Y. R.; Zhang, Q.; Zhang, H.; Li, X. M.; Chen, W.; Xu, J.; Shen, H.; Yang, J.; Pan, C. Q.; Zhu, Y. H. et al. Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angew. Chem., Int. Ed. 2022, 61, e202212273.

[64]

Yu, W. Z.; Wang, W. W.; Li, S. Q.; Fu, X. P.; Wang, X.; Wu, K.; Si, R.; Ma, C.; Jia, C. J.; Yan, C. H. Construction of active site in a sintered copper-ceria nanorod catalyst. J. Am. Chem. Soc. 2019, 141, 17548–17557.

[65]

Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

[66]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[67]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[68]

Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

[69]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[70]

DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746–751.

[71]

Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; Ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

[72]

Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.

[73]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[74]

Wang, F.; Ma, J.; Xin, S.; Wang, Q.; Xu, J.; Zhang, C.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

[75]

Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

[76]

Khivantsev, K.; Vargas, C. G.; Tian, J.; Kovarik, L.; Jaegers, N. R.; Szanyi, J.; Wang, Y. Economizing on precious metals in three-way catalysts: Thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant conditions. Angew. Chem., Int. Ed. 2021, 60, 391–398.

[77]

Zhang, S. R.; Tang, Y.; Nguyen, L.; Zhao, Y. F.; Wu, Z. L.; Goh, T. W.; Liu, J. J.; Li, Y. Y.; Zhu, T.; Huang, W. Y. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 2018, 8, 110–121.

[78]

Qu, W. Y.; Liu, X. N.; Chen, J. X.; Dong, Y. Y.; Tang, X. F.; Chen, Y. X. Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nat. Commun. 2020, 11, 1532.

[79]

Beniya, A.; Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2019, 2, 590–602.

[80]

Farrauto, R. J.; Deeba, M.; Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2, 603–613.

[81]

Datye, A. K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1049–1059.

[82]

Zhou, X.; Han, K.; Li, K.; Pan, J.; Wang, X.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Dual-site single-atom catalysts with high performance for three-way catalysis. Adv. Mater. 2022, 34, 2201859.

[83]

Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134.

[84]

Yang, W. H.; Peng, Y.; Wang, Y.; Wang, Y.; Liu, H.; Su, Z. A.; Yang, W. N.; Chen, J. J.; Si, W. Z.; Li, J. H. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Appl. Catal. B: Environ. 2020, 278, 119279.

[85]

Yang, Q. L.; Wang, X. Y.; Wang, H. L.; Li, X. B.; Li, Q.; Wu, Y. M.; Peng, Y.; Ma, Y. L.; Li, J. H. Surface tailoring on SrMnO3@SmMn2O5 for boosting the performance in diesel oxidation catalyst. Appl. Catal. B: Environ. 2023, 320, 121993.

[86]

Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.

[87]

Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. F. Electronic metal–support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

[88]

Gan, T.; Yang, J. X.; Morris, D.; Chu, X. F.; Zhang, P.; Zhang, W. X.; Zou, Y. C.; Yan, W. F.; Wei, S. H.; Liu, G. Electron donation of non-oxide supports boosts O2 activation on nano-platinum catalysts. Nat. Commun. 2021, 12, 2741.

[89]

Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650–659.

[90]

Yan, D. X.; Chen, J.; Jia, H. P. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem., Int. Ed. 2020, 59, 13562–13567.

[91]

Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B: Environ. 2019, 257, 117878.

[92]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[93]

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

[94]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[95]

Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

[96]
Li, Y. P.; Wang, W. T.; Cheng, M. Y.; Feng, Y. F.; Han, X.; Qian, Q. Z.; Zhu, Y.; Zhang, G. Q. Arming Ru with oxygen vacancy enriched RuO2 sub-nanometer skin activates superior bifunctionality for pH-universal overall water splitting. Adv. Mater., in press, https://doi.org/10.1002/adma.202206351.
[97]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, 15, 1730–1752.

[98]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[99]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[100]

Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

[101]

Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. (Weinh.) 2022, 9, 2200307.

[102]

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

[103]

Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

[104]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[105]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[106]

Zhao, Y. F.; Kumar, P. V.; Tan, X.; Lu, X. X.; Zhu, X. F.; Jiang, J. J.; Pan, J.; Xi, S. B.; Yang, H. Y.; Ma, Z. P. et al. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 2022, 13, 2430.

[107]

Zhang, T. Y.; Jin, J.; Chen, J. M.; Fang, Y. Y.; Han, X.; Chen, J. Y.; Li, Y. P.; Wang, Y.; Liu, J. F.; Wang, L. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.

[108]

Yu, F. Y.; Lang, Z. L.; Yin, L. Y.; Feng, K.; Xia, Y. J.; Tan, H. Q.; Zhu, H. T.; Zhong, J.; Kang, Z. H.; Li, Y. G. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 2020, 11, 490.

[109]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[110]

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

[111]

Wang, Q. L.; Cheng, Y. Q.; Tao, H. B.; Liu, Y. H.; Ma, X. H.; Li, D. S.; Yang, H. B.; Liu, B. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216645.

[112]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[113]

Liu, X. H.; Xi, S. B.; Kim, H.; Kumar, A.; Lee, J.; Wang, J.; Tran, N. Q.; Yang, T.; Shao, X. D.; Liang, M. F. et al. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat. Commun. 2021, 12, 5676.

[114]

Wu, D. S.; Kusada, K.; Yoshioka, S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Chen, Y. N.; Seo, O.; Kim, J.; Song, C. et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. Nat. Commun. 2021, 12, 1145.

[115]

Zu, L. H.; Qian, X. Y.; Zhao, S. L.; Liang, Q. H.; Chen, Y. E.; Liu, M.; Su, B. J.; Wu, K. H.; Qu, L. B.; Duan, L. L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 2022, 144, 2208–2217.

[116]

Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; Van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

[117]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

[118]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[119]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[120]

Jiang, K.; Luo, M.; Peng, M.; Yu, Y. Q.; Lu, Y. R.; Chan, T. S.; Liu, P.; De Groot, F. M. F.; Tan, Y. W. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 2020, 11, 2701.

[121]

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

[122]

Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[123]

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

[124]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[125]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[126]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[127]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[128]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[129]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[130]

Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 1163–1167.

[131]

Song, Z. X.; Zhu, Y. N.; Liu, H. S.; Banis, M. N.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Sham, T. K.; Yang, L. J. et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small 2020, 16, 2003096.

[132]

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

[133]

Han, X.; Zhang, T. Y.; Chen, W. X.; Dong, B.; Meng, G.; Zheng, L. R.; Yang, C.; Sun, X. M.; Zhuang, Z. B.; Wang, D. S. et al. Mn-N4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 2021, 11, 2002753.

[134]

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

[135]

Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; Xin, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.

[136]

Yuan, Q. X.; Fan, M. M.; Zhao, Y. Y.; Wu, J. J.; Raj, J.; Wang, Z. M.; Wang, A.; Sun, H.; Xu, X.; Wu, Y. H. et al. Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Appl. Catal. B: Environ. 2023, 324, 122195.

[137]

Zheng, Y. J.; Wang, P.; Huang, W. H.; Chen, C. L.; Jia, Y. Y.; Dai, S.; Li, T.; Zhao, Y.; Qiu, Y. C.; Waterhouse, G. I. N. et al. Toward more efficient carbon-based electrocatalysts for hydrogen peroxide synthesis: Roles of cobalt and carbon defects in two-electron ORR catalysis. Nano Lett. 2023, 23, 1100–1108.

[138]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[139]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[140]

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

[141]

Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039.

[142]

Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

[143]

Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.

[144]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[145]

Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

[146]

Zhang, Z. Q.; Liu, J. P.; Wang, J.; Wang, Q.; Wang, Y. H.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z. H.; Lim, J. et al. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 2021, 12, 5235.

[147]

Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.

[148]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[149]

Xu, A. N.; Hung, S. F.; Cao, A.; Wang, Z. B.; Karmodak, N.; Huang, J. E.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Wu, F. Y. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 2022, 5, 1081–1088.

[150]

Ren, H. J.; Kovalev, M.; Weng, Z. Y.; Muhamad, M. Z.; Ma, H. Y.; Sheng, Y.; Sun, L. B.; Wang, J. J.; Rihm, S.; Yang, W. F. et al. Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis. Nat. Catal. 2022, 5, 1169–1179.

[151]

Shin, S. J.; Choi, H.; Ringe, S.; Won, D. H.; Oh, H. S.; Kim, D. H.; Lee, T.; Nam, D. H.; Kim, H.; Choi, C. H. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 2022, 13, 5482.

[152]

Zhu, J. W.; Wang, Y. Y.; Zhi, A. M.; Chen, Z. T.; Shi, L.; Zhang, Z. B.; Zhang, Y.; Zhu, Y. L.; Qiu, X. Y.; Tian, X. Z. et al. Cation-deficiency-dependent CO2 electroreduction over copper-based ruddlesden-popper perovskite oxides. Angew. Chem., Int. Ed. 2022, 61, e202111670.

[153]

Lin, L.; He, X. Y.; Zhang, X. G.; Ma, W. C.; Zhang, B.; Wei, D. Y.; Xie, S. J.; Zhang, Q. H.; Yi, X. D.; Wang, Y. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem., Int. Ed. 2023, 62, e202214959.

[154]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[155]

Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.

[156]

Zhang, Z. D.; Wang, D. S. Single-atom catalysts: Stimulating electrochemical CO2 reduction reaction in the industrial era. J. Mater. Chem. A 2022, 10, 5863–5877.

[157]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[158]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[159]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[160]

Zhang, Z. D.; Chen, S. H.; Zhu, J. X.; Ye, C. L.; Mao, Y.; Wang, B. Q.; Zhou, G.; Mai, L. Q.; Wang, Z. Y.; Liu, X. W. et al. Charge-separated Pdδ–Cuδ+ atom pairs promote CO2 reduction to C2. Nano Lett. 2023, 23, 2312–2320.

[161]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[162]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[163]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[164]

Lin, Y. X.; Zhang, S. N.; Xue, Z. H.; Zhang, J. J.; Su, H.; Zhao, T. J.; Zhai, G. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 2019, 10, 4380.

[165]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[166]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

[167]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[168]

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

[169]

Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

[170]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[171]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[172]

Zhang, S. B.; Han, M. M.; Shi, T. F.; Zhang, H. M.; Lin, Y.; Zheng, X. S.; Zheng, L. R.; Zhou, H. J.; Chen, C.; Zhang, Y. X. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 2023, 6, 169–179.

[173]

Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

[174]

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

[175]

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

[176]

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707.

[177]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[178]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[179]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[180]

Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

[181]

Wang, L. B.; Zhang, W. B.; Wang, S. P.; Gao, Z. H.; Luo, Z. H.; Wang, X.; Zeng, R.; Li, A. W.; Li, H. L.; Wang, M. L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 2016, 7, 14036.

[182]

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

[183]

Ro, I.; Qi, J.; Lee, S.; Xu, M. J.; Yan, X. X.; Xie, Z. H.; Zakem, G.; Morales, A.; Chen, J. G.; Pan, X. Q. et al. Bifunctional hydroformylation on heterogeneous Rh–WOx pair site catalysts. Nature 2022, 609, 287–292.

[184]

Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

[185]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[186]

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

[187]

Sivula, K.; Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

[188]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[189]

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

[190]

Zhou, A. W.; Dou, Y. B.; Zhao, C.; Zhou, J.; Wu, X. Q.; Li, J. R. A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction. Appl. Catal. B: Environ. 2020, 264, 118519.

[191]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[192]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[193]

Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed. 2022, 61, e202206579.

[194]

Liu, S. Z.; Wang, Y. J.; Wang, S. B.; You, M. M.; Hong, S.; Wu, T. S.; Soo, Y. L.; Zhao, Z. Q.; Jiang, G. Y.; Qiu, J. S. et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 2019, 7, 6813–6820.

[195]

Guo, X. W.; Chen, S. M.; Wang, H. J.; Zhang, Z. M.; Lin, H.; Song, L.; Lu, T. B. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831–19837.

[196]

Wu, W. L.; Cui, E. X.; Zhang, Y.; Zhang, C.; Zhu, F.; Tung, C. H.; Wang, Y. F. Involving single-atom silver(0) in selective dehalogenation by AgF under visible-light irradiation. ACS Catal. 2019, 9, 6335–6341.

[197]

Collado, L.; Jansson, I.; Platero-Prats, A. E.; Perez-Dieste, V.; Escudero, C.; Molins, E.; I Doucastela, L. C.; Sánchez, B.; Coronado, J. M.; Serrano, D. P. et al. Elucidating the photoredox nature of isolated iron active sites on MCM-41. ACS Catal. 2017, 7, 1646–1654.

[198]

Lu, C.; Fang, R. Y.; Chen, X. Single-atom catalytic materials for advanced battery systems. Adv. Mater. 2020, 32, 1906548.

[199]

Sun, Y. W.; Zhou, J. Q.; Ji, H. Q.; Liu, J.; Qian, T.; Yan, C. L. Single-atom iron as lithiophilic site to minimize lithium nucleation overpotential for stable lithium metal full battery. ACS Appl. Mater. Interfaces 2019, 11, 32008–32014.

[200]

Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.

[201]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[202]

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

[203]

Yang, T. Z.; Qian, T.; Sun, Y. W.; Zhong, J.; Rosei, F.; Yan, C. L. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett. 2019, 19, 7827–7835.

[204]

Zhang, B. W.; Sheng, T.; Liu, Y. D.; Wang, Y. X.; Zhang, L.; Lai, W. H.; Wang, L.; Yang, J. P.; Gu, Q. F.; Chou, S. L. et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 2018, 9, 4082.

[205]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, 2206783.

[206]

Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

[207]

Koga, K. Electronic and catalytic effects of single-atom Pd additives on the hydrogen sensing properties of Co3O4 nanoparticle films. ACS Appl. Mater. Interfaces 2020, 12, 20806–20823.

[208]

Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.

[209]

Kim, Y.; Kang, S. K.; Oh, N. C.; Lee, H. D.; Lee, S. M.; Park, J.; Kim, H. Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909.

[210]

Yoon, H. J.; Jun, D. H.; Yang, J. H.; Zhou, Z. X.; Yang, S. S.; Cheng, M. M. C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuat. B: Chem. 2011, 157, 310–313.

[211]

Zheng, W.; Liu, X. H.; Xie, J. Y.; Lu, G. C.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coord. Chem. Rev. 2021, 447, 214151.

[212]

Zong, B. Y.; Xu, Q. K.; Mao, S. Single-atom Pt-functionalized Ti3C2Tx field-effect transistor for volatile organic compound gas detection. ACS Sens. 2022, 7, 1874–1882.

[213]

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

[214]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[215]

Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

[216]

Sun, L. P.; Li, W. Q.; Liu, Z. H.; Zhou, Z. J.; Feng, Y. Iodine-doped single-atom cobalt catalysts with boosted antioxidant enzyme-like activity for colitis therapy. Chem. Eng. J. 2023, 453, 139870.

[217]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[218]
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202301879.
[219]

Yang, M.; Liu, J. L.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470–3473.

[220]

Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water–gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.

[221]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[222]

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

[223]

Bu, J.; Liu, Z. P.; Ma, W. X.; Zhang, L.; Wang, T.; Zhang, H. P.; Zhang, Q. Y.; Feng, X. L.; Zhang, J. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557–564.

[224]

Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R. A.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747–4754.

[225]

Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.

[226]

Fu, X. B.; Liu, J.; Kanchanakungwankul, S.; Hu, X. B.; Yue, Q.; Truhlar, D. G.; Hupp, J. T.; Kang, Y. J. Two-dimensional Pd rafts confined in copper nanosheets for selective semihydrogenation of acetylene. Nano Lett. 2021, 21, 5620–5626.

[227]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[228]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

Nano Research
Pages 18-38
Cite this article:
Gan T, Wang D. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Research, 2024, 17(1): 18-38. https://doi.org/10.1007/s12274-023-5700-4
Topics:

1283

Views

136

Crossref

145

Web of Science

127

Scopus

0

CSCD

Altmetrics

Received: 09 March 2023
Revised: 22 March 2023
Accepted: 29 March 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return