Journal Home > Volume 16 , Issue 7

For the large amount of waste heat wasted in daily life and industrial production, we propose a new type of flexible thermoelectric generators (F-TEGs) which can be used as a large area bionic skin to achieve energy harvesting of thermal energy. With reference to biological structures such as pinecone, succulent, and feathers, we have designed and fabricated a biomimetic flexible TEG that can be applied in a wide temperature range which has the highest temperature energy harvesting capability currently. The laminated free structure of the bionic F-TEG dramatically increases the efficiency and density of energy harvesting. The F-TEGs (single TEG only 101.2 mg in weight), without an additional heat sink, demonstrates the highest output voltage density of 286.1 mV/cm2 and the maximum power density is 66.5 mW/m2 at a temperature difference of nearly 1000 °C. The flexible characteristics of F-TEGs make it possible to collect the diffused thermal energy by flexible attachment to the outer walls of high-temperature pipes and vessels of different diameters and shapes. This work shows a new design and application concept for flexible thermal energy collectors, which fills the gap of flexible energy harvesting in high-temperature environment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A large-area bionic skin for high-temperature energy harvesting applications

Show Author's information Zhaojun Liu1,2 ( )Bian Tian1,3( )Yao Li1Jiaming Lei1Zhongkai Zhang1Jiangjiang Liu1Qijing Lin1Chengkuo Lee2Zhuangde Jiang1
State Key Laboratory for Mechanical Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Department of Electrical & Computer Engineering, National University of Singapore, Singapore 117576, Singapore
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China

Abstract

For the large amount of waste heat wasted in daily life and industrial production, we propose a new type of flexible thermoelectric generators (F-TEGs) which can be used as a large area bionic skin to achieve energy harvesting of thermal energy. With reference to biological structures such as pinecone, succulent, and feathers, we have designed and fabricated a biomimetic flexible TEG that can be applied in a wide temperature range which has the highest temperature energy harvesting capability currently. The laminated free structure of the bionic F-TEG dramatically increases the efficiency and density of energy harvesting. The F-TEGs (single TEG only 101.2 mg in weight), without an additional heat sink, demonstrates the highest output voltage density of 286.1 mV/cm2 and the maximum power density is 66.5 mW/m2 at a temperature difference of nearly 1000 °C. The flexible characteristics of F-TEGs make it possible to collect the diffused thermal energy by flexible attachment to the outer walls of high-temperature pipes and vessels of different diameters and shapes. This work shows a new design and application concept for flexible thermal energy collectors, which fills the gap of flexible energy harvesting in high-temperature environment.

Keywords: flexible, high-temperature, bionic structure, thermoelectric generators (TEGs)

References(49)

[1]

Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50.

[2]

Saidur, R.; Abdelaziz, E. A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289.

[3]

Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048.

[4]

Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production-present and future. Cem. Concr. Res. 2011, 41, 642–650.

[5]

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

[6]

Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.

[7]

Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of organic rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186.

[8]

Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660.

[9]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[10]

Pecunia, V.; Occhipinti, L. G.; Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 2021, 11, 2100698.

[11]

Haras, M.; Skotnicki, T. Thermoelectricity for IoT - a review. Nano Energy 2018, 54, 461–476.

[12]

Kanahashi, K.; Pu, J.; Takenobu, T. 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 2020, 10, 1902842.

[13]

Shi, J. D.; Liu, S.; Zhang, L. S.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J. W.; Chen, W. et al. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, 1901958.

[14]

Chen, W. Y.; Shi, X. L.; Zou, J.; Chen, Z. G. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Mater. Sci. Eng. R Rep. 2022, 151, 100700.

[15]

Cao, T. Y.; Shi, X. L.; Chen, Z. G. Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci. 2023, 131, 101003.

[16]

Liang, L. R.; Lv, H. C.; Shi, X. L.; Liu, Z. X.; Chen, G. M.; Chen, Z. G.; Sun, G. X. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 2021, 8, 2750–2760.

[17]

Zheng, Z. H.; Shi, X. L.; Ao, D. W.; Liu, W. D.; Li, M.; Kou, L. Z.; Chen, Y. X.; Li, F.; Wei, M.; Liang, G. X. et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2022, 6, 180–191.

[18]

Liu, Z. J.; Tian, B.; Zhang, B. F.; Liu, J. J.; Zhang, Z. K.; Wang, S.; Luo, Y. Y.; Zhao, L. B.; Shi, P.; Lin, Q. J. et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 2021, 7, 42.

[19]

Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531.

[20]

Wang, Y.; Yang, L.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916.

[21]

Goldsmid, H. J.; Douglas, R. W. The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 1954, 5, 458.

[22]

Rowe, D. M.; Clee, M. Preparation of high-density small grain size compacts of lead tin telluride. J. Mater. Sci. Mater. Electron. 1990, 1, 129–132.

[23]

Hewes, C. R.; Adler, M. S.; Senturia, S. D. Annealing studies of PbTe and Pb1-xSnxTe. J. Appl. Phys. 1973, 44, 1327–1332.

[24]

Harman, T. C.; Paris, B.; Miller, S. E.; Goering, H. L. Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3. J. Phys. Chem. Solids 1957, 2, 181–190.

[25]

Tian, B.; Liu, Z. J.; Zhang, Z. K.; Liu, Y.; Lin, Q. J.; Shi, P.; Jiang, Z. D. Effect of film deposition rate on the thermoelectric output of tungsten-rhenium thin film thermocouples by DC magnetron sputtering. J. Micromech. Microeng. 2020, 30, 065004.

[26]

Strasser, M.; Aigner, R.; Lauterbach, C.; Sturm, T. F.; Franosch, M.; Wachutka, G. Micromachined CMOS thermoelectric generators as on-chip power supply. Sens. Actuators A Phys. 2004, 114, 362–370.

[27]

Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y. L.; Shahzad, S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy 2021, 89, 106325.

[28]

Wu, Z. H.; Zhang, S.; Liu, Z. K.; Mu, E. Z.; Hu, Z. Y. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692.

[29]

Zhang, L. S.; Lin, S. P.; Hua, T.; Huang, B. L.; Liu, S. R.; Tao, X. M. Fiber-based thermoelectric generators: Materials, device structures, fabrication, characterization, and applications. Adv. Energy Mater. 2018, 8, 1700524.

[30]

Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518–524.

[31]

Guo, Z. P.; Yu, Y. D.; Zhu, W.; Zhang, Q. Q.; Liu, Y. T.; Zhou, J.; Wang, Y. L.; Xing, J.; Deng, Y. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application. Adv. Energy Mater. 2022, 12, 2102993.

[32]

Hou, W. K.; Nie, X. L.; Zhao, W. Y.; Zhou, H. Y.; Mu, X.; Zhu, W. T.; Zhang, Q. J. Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 2018, 50, 766–776.

[33]

Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745.

[34]

Xue, H.; Yang, Q.; Wang, D. Y.; Luo, W. J.; Wang, W. Q.; Lin, M. S.; Liang, D. L.; Luo, Q. M. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154.

[35]

Francioso, L.; De Pascali, C.; Sglavo, V.; Grazioli, A.; Masieri, M.; Siciliano, P. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Convers. Manage. 2017, 145, 204–213.

[36]

Liu, Z. J.; Tian, B.; Jiang, Z. D.; Li, S. M.; Lei, J. M.; Zhang, Z. K.; Liu, J. J.; Shi, P.; Lin, Q. J. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200°C. Int. J. Extrem. Manuf. 2023, 5, 015601.

[37]

Zhou, Q.; Zhu, K.; Li, J.; Li, Q. K.; Deng, B.; Zhang, P. X.; Wang, Q.; Guo, C. F.; Wang, W. C.; Liu, W. S. Leaf-inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air. Adv. Sci. 2021, 8, 2004947.

[38]

Yang, Y. Q.; Guo, X. G.; Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv. Energy Mater. 2023, 13, 2203040.

[39]

Guo, X. G.; He, T. Y. Y.; Zhang, Z. X.; Luo, A. X.; Wang, F.; Ng, E. J.; Zhu, Y.; Liu, H. C.; Lee, C. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 2021, 15, 19054–19069.

[40]

Vijayakanth, T.; Liptrot, D. J.; Gazit, E.; Boomishankar, R.; Bowen, C. R. Recent advances in organic and organic-inorganic hybrid materials for piezoelectric mechanical energy harvesting. Adv. Funct. Mater. 2022, 32, 2109492.

[41]

Li, H. Y.; Su, L.; Kuang, S. Y.; Fan, Y. J.; Wu, Y.; Wang, Z. L.; Zhu, G. Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Res. 2017, 10, 785–793.

[42]

Wang, X. D.; Liang, L. R.; Lv, H. C.; Zhang, Y. C.; Chen, G. M. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 2021, 90, 106577.

[43]

Kim, J.; Bae, E. J.; Kang, Y. H.; Lee, C.; Cho, S. Y. Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 2020, 74, 104824.

[44]

Jia, F.; Wu, R. L.; Liu, C.; Lan, J. L.; Lin, Y. H.; Yang, X. P. High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels. ACS Sustainable Chem. Eng. 2019, 7, 12591–12600.

[45]

Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; Völklein, F.; Doll, T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens. Actuators A Phys. 2006, 132, 325–330.

[46]

Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F. et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069.

[47]

Trung, N. H.; Van Toan, N.; Ono, T. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl. Energy 2018, 210, 467–476.

[48]

Im, H.; Moon, H. G.; Lee, J. S.; Chung, I. Y.; Kang, T. J.; Kim, Y. H. Flexible thermocells for utilization of body heat. Nano Res. 2014, 7, 443–452.

[49]

Wu, B.; Guo, Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater. 2019, 29, 1900304.

Video
12274_2023_5699_MOESM2_ESM.mp4
12274_2023_5699_MOESM4_ESM.mp4
12274_2023_5699_MOESM3_ESM.mp4
File
12274_2023_5699_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 February 2023
Revised: 25 March 2023
Accepted: 28 March 2023
Published: 31 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFB2009100), the Natural Science Basic Research Program of Shaanxi (No. 2022JQ-508), the National Science and Technology Major Project (No. J2019-V-0006-0100), and the Open research fund of SKLMS (No. sklms2021009). Zhaojun Liu received the China Scholarship Council Fund (No. 202206280155) for his research stay at National University of Singapore.

Return