Journal Home > Volume 16 , Issue 7

Bilayer graphene provides a versatile platform for exploring a variety of intriguing phenomena and shows much promise for applications in electronics, optoelectronics, etc. Controlled growth of large-area bilayer graphene is therefore highly desired yet still suffers from a slow growth rate and poor layer uniformity. Meanwhile, graphene wrinkles, including folds and ripples, form during cooling due to the thermal contraction mismatch between graphene and the metal substrates, and have been far from suppressed or eliminated, especially in bilayer graphene, which would greatly degrade the extraordinary properties of graphene. Here we report the ultrafast growth of wafer-scale fold-free bilayer graphene by chemical vapor deposition. Through well-tuning the alloy thickness and strain regulation of the single-crystal CuNi(111)/sapphire, the full coverage of a 2-inch fold-free bilayer graphene wafer via mainly isothermal segregation has been achieved as fast as 30 s. The tensile-strained CuNi(111) film reduces the thermal contraction mismatch and suppresses the formation of graphene folds during cooling, which is directly observed through in situ optical microscopy. The ultraflat bilayer graphene exhibits wafer-scale uniformity in electrical performance and enhanced mechanical property comparable to the exfoliated ones. Our results offer a promising route for large-scale production of bilayer graphene and enable its various applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrafast growth of wafer-scale fold-free bilayer graphene

Show Author's information Jilin Tang1,2,3Yuechen Wang1,2,3Yuwei Ma4Xiaoyin Gao1Xin Gao1,2,3Ning Li5Yani Wang1,3Shishu Zhang1Liming Zheng1,3Bing Deng1,3Rui Yan3Yisen Cao3Ronghua Zhang3Lianming Tong1Jin Zhang1,2,3Peng Gao5Zhongfan Liu1,2,3Xiaoding Wei4Hongtao Liu1( )Hailin Peng1,2,3( )
Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
Electron Microscopy Laboratory, School of Physics, International Center for Quantum Materials, Peking University, Beijing 100871, China

Abstract

Bilayer graphene provides a versatile platform for exploring a variety of intriguing phenomena and shows much promise for applications in electronics, optoelectronics, etc. Controlled growth of large-area bilayer graphene is therefore highly desired yet still suffers from a slow growth rate and poor layer uniformity. Meanwhile, graphene wrinkles, including folds and ripples, form during cooling due to the thermal contraction mismatch between graphene and the metal substrates, and have been far from suppressed or eliminated, especially in bilayer graphene, which would greatly degrade the extraordinary properties of graphene. Here we report the ultrafast growth of wafer-scale fold-free bilayer graphene by chemical vapor deposition. Through well-tuning the alloy thickness and strain regulation of the single-crystal CuNi(111)/sapphire, the full coverage of a 2-inch fold-free bilayer graphene wafer via mainly isothermal segregation has been achieved as fast as 30 s. The tensile-strained CuNi(111) film reduces the thermal contraction mismatch and suppresses the formation of graphene folds during cooling, which is directly observed through in situ optical microscopy. The ultraflat bilayer graphene exhibits wafer-scale uniformity in electrical performance and enhanced mechanical property comparable to the exfoliated ones. Our results offer a promising route for large-scale production of bilayer graphene and enable its various applications.

Keywords: bilayer graphene, ultrafast growth, graphene wrinkles, single crystal wafer, in situ optical microscopy

References(34)

[1]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[2]

Lin, Q. Y.; Zeng, Y. H.; Liu, D.; Jing, G. Y.; Liao, Z. M.; Yu, D. P. Step-by-step fracture of two-layer stacked graphene membranes. ACS Nano 2014, 8, 10246–10251.

[3]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[4]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[5]

Nguyen, V. L.; Perello, D. J.; Lee, S.; Nai, C. T.; Shin, B. G.; Kim, J. G.; Park, H. Y.; Jeong, H. Y.; Zhao, J.; Vu, Q. A. et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 2016, 28, 8177–8183.

[6]

Liu, L. X.; Zhou, H. L.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. F. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

[7]

Wang, H. Z.; Yao, Z. P.; Jung, G. S.; Song, Q. C.; Hempel, M.; Palacios, T.; Chen, G.; Buehler, M. J.; Aspuru-Guzik, A.; Kong, J. Frank-van der Merwe growth in bilayer graphene. Matter 2021, 4, 3339–3353.

[8]

Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

[9]

Takesaki, Y.; Kawahara, K.; Hibino, H.; Okada, S.; Tsuji, M.; Ago, H. Highly uniform bilayer graphene on epitaxial Cu-Ni(111) alloy. Chem. Mater. 2016, 28, 4583–4592.

[10]

Gao, Z. L.; Zhang, Q. C.; Naylor, C. H.; Kim, Y.; Abidi, I. H.; Ping, J. L.; Ducos, P.; Zauberman, J.; Zhao, M. Q.; Rappe, A. M. et al. Crystalline bilayer graphene with preferential stacking from Ni-Cu gradient alloy. ACS Nano 2018, 12, 2275–2282.

[11]

Huang, M.; Bakharev, P. V.; Wang, Z. J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y. Q.; Qu, D. S. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 2020, 15, 289–295.

[12]

Solis-Fernandez, P.; Terao, Y.; Kawahara, K.; Nishiyama, W.; Uwanno, T.; Lin, Y. C.; Yamamoto, K.; Nakashima, H.; Nagashio, K.; Hibino, H. et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano 2020, 14, 6834–6844.

[13]

Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

[14]

Ma, W.; Chen, M. L.; Yin, L. C.; Liu, Z. B.; Li, H.; Xu, C.; Xin, X.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019, 10, 2809.

[15]

Zhu, W. J.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H. G.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

[16]

Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 2017, 11, 12337–12345.

[17]

Chen, S. S.; Li, Q. Y.; Zhang, Q. M.; Qu, Y.; Ji, H. X.; Ruoff, R. S.; Cai, W. W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701.

[18]

Deng, B.; Hou, Y.; Liu, Y.; Khodkov, T.; Goossens, S.; Tang, J. L.; Wang, Y. N.; Yan, R.; Du, Y.; Koppens, F. H. L. et al. Growth of ultraflat graphene with greatly enhanced mechanical properties. Nano Lett. 2020, 20, 6798–6806.

[19]

Zhang, Y. H.; Wang, B.; Zhang, H. R.; Chen, Z. Y.; Zhang, Y. Q.; Wang, B.; Sui, Y. P.; Li, X. L.; Xie, X. M.; Yu, G. H. et al. The distribution of wrinkles and their effects on the oxidation resistance of chemical vapor deposition graphene. Carbon 2014, 70, 81–86.

[20]

Wang, B.; Huang, M.; Tao, L.; Lee, S. H.; Jang, A. R.; Li, B. W.; Shin, H. S.; Akinwande, D.; Ruoff, R. S. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 2016, 10, 1404–1410.

[21]

Deng, B.; Wu, J. X.; Zhang, S. S.; Qi, Y.; Zheng, L. M.; Yang, H.; Tang, J. L.; Tong, L. M.; Zhang, J.; Liu, Z. F. et al. Anisotropic strain relaxation of graphene by corrugation on copper crystal surfaces. Small 2018, 14, 1800725.

[22]

Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M. R.; Chatterjee, S. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524.

[23]

Yi, D.; Luo, D.; Wang, Z. J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. What drives metal-surface step bunching in graphene chemical vapor deposition. Phys. Rev. Lett. 2018, 120, 246101.

[24]

Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

[25]

Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano 2015, 9, 679–686.

[26]

Zhang, X. F.; Wu, T. R.; Jiang, Q.; Wang, H. S.; Zhu, H. L.; Chen, Z. Y.; Jiang, R.; Niu, T. C.; Li, Z. J.; Zhang, Y. W. et al. Epitaxial growth of 6 in. Single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small 2019, 15, 1805395.

[27]

Kang, J. H.; Moon, J.; Kim, D. J.; Kim, Y.; Jo, I.; Jeon, C.; Lee, J.; Hong, B. H. Strain relaxation of graphene layers by Cu surface roughening. Nano Lett. 2016, 16, 5993–5998.

[28]

Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: Surface phase transition. Surf. Sci. 1974, 43, 493–520.

[29]

Gong, P.; Tang, C.; Wang, B. R.; Xiao, T. S.; Zhu, H.; Li, Q. W.; Sun, Z. Z. Precise CO2 reduction for bilayer graphene. ACS Cent. Sci. 2022, 8, 394–401.

[30]

Yim, W. M.; Paff, R. J. Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 1974, 45, 1456–1457.

[31]

Suh, I. K.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J. Mater. Sci. 1988, 23, 757–760.

[32]

Zeller, P.; Weinl, M.; Speck, F.; Ostler, M.; Henss, A. K.; Seyller, T.; Schreck, M.; Wintterlin, J. Single crystalline metal films as substrates for graphene growth. Ann. Der Phys. 2017, 529, 1700023.

[33]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[34]

Lee, C.; Wei, X. D.; Li, Q. Y.; Carpick, R.; Kysar, J. W.; Hone, J. Elastic and frictional properties of graphene. Phys. Status Solidi B 2009, 246, 2562–2567.

Video
12274_2023_5697_MOESM2_ESM.mp4
12274_2023_5697_MOESM4_ESM.mp4
12274_2023_5697_MOESM5_ESM.mp4
12274_2023_5697_MOESM3_ESM.mp4
File
12274_2023_5697_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 December 2022
Revised: 21 March 2023
Accepted: 28 March 2023
Published: 31 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52021006, T2188101, and 22105009), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), and the Tencent Foundation (No. XPLORER PRIZE). We acknowledge Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry at Peking University for the use of instruments.

Return