Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nitrate (NO3−) removal by photochemical-reduction has received extensive attention. However, the low selectivity of NO3− reduction to N2 hinders the application of this technology. In this study, a novel Cu@Fe-Cu-CuFe2O4−x photocatalyst was prepared by modifying CuFe2O4 with KBH4 and Cu(II), and used to selectively reduce NO3− to N2 with a two-step reduction process. In step (1), with Cu@Fe-Cu-CuFe2O4−x/ultraviolet (UV) system, 91.0% NO3− was reduced to 52.3% NO2− and 39.4% N2 within 60 min. The rapid removal of NO3− was due to the synergistic effect of oxygen vacancies, Fe-Cu corrosion cell, and CuFe2O4 photocatalysis. In step (2), H2C2O4 and H2O2 were introduced into the effluent of step (1) to promote CO2·− formation via Fe(II) and Fe(III) catalysis and UV radiation, which boosted the selective reduction of NO2− to N2. When H2C2O4 and H2O2 dosages were both 4.0 mmol·L−1 and the reaction time was 30 min, the removal efficiency of NO2− achieved 100% and the selectivity of N2 was 83.0%. Overall, the two-step reduction process achieved 95.0% NO3− removal efficiency and 90.1% N2 selectivity with initial NO3− concentration of 30 mg·N·L−1. In addition, the denitrification mechanism of the two-step reduction process was tentatively proposed.
Li, R. B.; Cai, M. X.; Xie, Z. J.; Zhang, Q. X.; Zeng, Y. Q.; Liu, H. J.; Liu, G. G.; Lv, W. Y. Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl. Catal. B: Environ. 2019, 244, 974–982.
Tugaoen, H. O.; Herckes, P.; Hristovski, K.; Westerhoff, P. Influence of ultraviolet wavelengths on kinetics and selectivity for N-gases during TiO2 photocatalytic reduction of nitrate. Appl. Catal. B: Environ. 2018, 220, 597–606.
Chen, X. T.; Zhang, T.; Kan, M.; Song, D. G.; Jia, J. P.; Zhao, Y. X.; Qian, X. F. Binderless and oxygen vacancies rich FeNi/graphitized mesoporous carbon/Ni foam for electrocatalytic reduction of nitrate. Environ. Sci. Technol. 2020, 54, 13344–13353.
Tyagi, S.; Rawtani, D.; Khatri, N.; Tharmavaram, M. Strategies for nitrate removal from aqueous environment using nanotechnology: A review. J. Water Process. Eng. 2018, 21, 84–95.
Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.
Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.
Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B: Environ. 2017, 207, 42–59.
Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84.
Liu, Y.; Wang, J. L. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403.
Fseha, Y. H.; Sizirici, B.; Yildiz, I. Manganese and nitrate removal from groundwater using date palm biochar: Application for drinking water. Environ. Adv. 2022, 8, 100237.
Wang, Z. Y.; Dai, L. Y.; Yao, J. C.; Guo, T. J.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 2021, 281, 130718.
Wu, W. Z.; Yang, F. F.; Yang, L. H. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier. Bioresour. Technol. 2012, 118, 136–140.
Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.
Li, Z. Y.; Zhao, Y. J.; Guan, Q.; Liu, Q.; Khan, S.; Zhang, L. L.; Wang, X. Z.; Chen, L.; Yang, X.; Huo, M. X. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen. Appl. Surf. Sci. 2020, 508, 145225.
Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.
Silveira, J. E.; Ribeiro, A. R.; Carbajo, J.; Pliego, G.; Zazo, J. A.; Casas, J. A. The photocatalytic reduction of NO3− to N2 with ilmenite (FeTiO3): Effects of groundwater matrix. Water Res. 2021, 200, 117250.
Guo, W. L.; Zhang, Z. H.; Lin, H.; Cai, L. Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation. Mol. Catal. 2020, 492, 111011.
Cheng, D. S.; Yan, C. W.; Liu, Y. H.; Zhou, Y.; Lu, D. D.; Tang, X. N.; Cai, G. M.; Li, D. Q.; Zhao, Z.; Wang, X. Loading CuFe2O4 onto ceramic fabric for photocatalytic degradation of methylene blue under visible light irradiation. Ceram. Int. 2022, 48, 1256–1263.
Fugate, E. A.; Biswas, S.; Clement, M. C.; Kim, M.; Kim, D.; Asthagiri, A.; Baker, L. R. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 2019, 12, 2390–2399.
Li, X. H.; Zuo, M. H.; Wu, J. H.; Feng, L.; Wang, Z. Z.; Liu, B. Z. Wet chemistry synthesis of CuFe2O4/CdSe heterojunction for enhanced efficient photocatalytic H2 evolution under visible irradiation. Int. J. Hydrogen Energy 2021, 46, 13001–13010.
Cao, Y.; Fang, Y.; Lei, X. Y.; Tan, B. H.; Hu, X.; Liu, B. J.; Chen, Q. L. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021.
Wang, B. Q.; An, B. H.; Liu, Y.; Chen, J. L.; Zhou, J. Y. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation. Sep. Purif. Technol. 2020, 248, 117061.
Liu, X. Q.; Cai, L. A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism. Appl. Surf. Sci. 2019, 483, 875–887.
Zhang, J. M.; Liu, P. X.; Ren, Y. M.; Du, Y. C.; Geng, C. B.; Ma, J.; Zhao, F. B. Treatment of shale gas produced water by magnetic CuFe2O4/TNTs hybrid heterogeneous catalyzed ozone: Efficiency and mechanisms. J. Hazard. Mater. 2022, 423, 127124.
Bui, H. T.; Weon, S.; Bae, J. W.; Kim, E. J.; Kim, B.; Ahn, Y. Y.; Kim, K.; Lee, H.; Kim, W. Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. J. Hazard. Mater. 2021, 404, 123976.
Li, Z. R.; Deng, Z. Q.; Ouyang, L.; Fan, X. Y.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Alshehri, A. A.; Luo, Y. L.; Kong, Q. Q. et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res. 2022, 15, 8914–8921.
Liu, X. Q.; Duan, X. G.; Bao, T.; Hao, D.; Chen, Z. J.; Wei, W.; Wang, D. B.; Wang, S. B.; Ni, B. J. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. J. Hazard. Mater. 2022, 430, 128195.
Li, J. J.; Zhang, M.; Weng, B.; Chen, X.; Chen, J.; Jia, H. P. Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Appl. Surf. Sci. 2020, 507, 145133.
Guo, J. R.; Tian, J.; Deng, J. H.; Yang, X. Y.; Duan, B. H.; Liu, Y. Catalytic reduction of CO2 by Al-Sn-CNTs composite for synthesizing formic acid. Int. J. Hydrogen Energy 2021, 46, 29960–29971.
An, B. H.; Cai, L.; Liu, T.; Tian, J.; Liu, Y. Selective photo-reduction of NO2− to N2 in the presence of Fe2+ and citric acid. Sci. Total Environ. 2022, 819, 152963.
An, B. H.; He, H. N.; Duan, B. H.; Deng, J. H.; Liu, Y. Selective reduction of nitrite to nitrogen gas by CO2 anion radical from the activation of oxalate. Chemosphere 2021, 278, 130388.
Jin, B.; Wang, J. G.; Xu, F. X.; Li, D. F.; Men, Y. Hierarchical hollow WO3 microspheres with tailored surface oxygen vacancies for boosting photocatalytic selective conversion of biomass-derived alcohols. Appl. Surf. Sci. 2021, 547, 149239.
Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 243, 566–575.
Zhang, D. F.; Wang, B. Q.; Gong, X. B.; Yang, Z.; Liu, Y. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation. Chem. Eng. J. 2019, 359, 1195–1204.
Zhao, W. K.; Zhang, S. L.; Ding, J.; Deng, Z. Y.; Guo, L. N.; Zhong, Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J. Mol. Catal. A: Chem. 2016, 424, 153–161.
Guo, Y. G.; Zhao, Y.; Yang, T. X.; Gong, B.; Chen, B. Highly efficient nano-Fe/Cu bimetal-loaded mesoporous silica Fe/Cu-MCM-41 for the removal of Cr(VI): Kinetics, mechanism and performance. J. Hazard. Mater. 2021, 418, 126344.
Yu, L. Q.; Zhao, Y. H.; Wang, H.; Jin, F.; Chen, S. L.; Wen, T. E.; He, C. S.; Huang, B. C.; Jin, R. C. Surface oxygen vacancies formation on Zn2SnO4 for bisphenol—A degradation under visible light: The tuning effect by peroxymonosulfate. J. Hazard. Mater. 2022, 426, 127828.
Dong, Q. X.; Dong, H. R.; Li, Y. J.; Xiao, J. Y.; Xiang, S. X.; Hou, X. Z.; Chu, D. D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles. J. Hazard. Mater. 2022, 431, 128601.
Cui, L. L.; Li, Z. W.; Li, Q. Q.; Chen, M. F.; Jing, W. H.; Gu, X. H. Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chem. Eng. J. 2021, 420, 127666.
Ding, Y. B.; Zhu, L. H.; Wang, N.; Tang, H. Q. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl. Catal. B: Environ. 2013, 129, 153–162.
Ding, R. R.; Li, W. Q.; He, C. S.; Wang, Y. R.; Liu, X. C.; Zhou, G. N.; Mu, Y. Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range. Appl. Catal. B: Environ. 2021, 291, 120069.
Hankin, A.; Bedoya-Lora, F. E.; Alexander, J. C.; Regoutz, A.; Kelsall, G. H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176.
Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55.
Cai, L.; Jiang, H.; Wang, L. X. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole. Appl. Surf. Sci. 2017, 420, 43–52.
Cui, H.; Yao, C. F.; Cang, Y. G.; Liu, W. T.; Zhang, Z. H.; Miao, Y. Q.; Xin, Y. M. Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride. Sens. Actuators B: Chem. 2022, 359, 131564.
Guo, J. R.; Deng, J. H.; An, B. H.; Tian, J.; Wu, J. S.; Liu, Y. Selective reduction of nitrate to nitrogen by Fe0-Cu0-CuFe2O4 composite coupled with carbon dioxide anion radical under UV irradiation. Chemosphere 2022, 295, 133785.
Huang, Y.; Kong, M. H.; Westerman, D.; Xu, E. G.; Coffin, S.; Cochran, K. H.; Liu, Y. Q.; Richardson, S. D.; Schlenk, D.; Dionysiou, D. D. Effects of HCO3− on degradation of toxic contaminants of emerging concern by UV/NO3−. Environ. Sci. Technol. 2018, 52, 12697–12707.
Liu, Y.; Zhao, Y.; Wang, J. L. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2021, 404, 124191.
Liu, Y. B.; Zhang, X. M.; Deng, J. H.; Liu, Y. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient Fenton-like catalyst for degradation of sulfonamides. Chemosphere 2021, 277, 130305.