Journal Home > Volume 16 , Issue 7

Quasi-one-dimensional ZrS3 nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy, stemming from the low symmetry in the crystal structure. However, the conventional chemical vapor transport method for synthesizing bulk ZrS3 is limited by morphology and size controllability. It is highly desirable to propose a facile way to precisely synthesize ZrS3 nanoflakes. In this work, the chemical vapor deposition method is proposed as a feasible way to synthesize ZrS3 nanoflakes. The effects of various substrates and temperatures on ZrS3 synthesis have been investigated. For the as-grown ZrS3, good crystallinity is confirmed with X-ray diffraction and transmission electron microscopy. The structure and interlayer coupling are investigated with Raman scattering spectroscopy. The strong in-plane anisotropy and interlayer coupling of the ZrS3 nanoflakes are illustrated with angle-resolved Raman spectroscopy and temperature-dependent Raman characterization, respectively. This study demonstrates a feasible way for the synthesis of transition metal trisulfides, which may shed new light on the research of other two-dimensional anisotropic transition metal materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemical vapor deposition synthesis and Raman scattering investigation of quasi-one-dimensional ZrS3 nanoflakes

Show Author's information Yang Chen1Yuanyuan Jin1Junqiang Yang4Yizhang Ren1Zhuojun Duan1Xiao Liu1Jian Sun4Song Liu1Xukun Zhu3( )Xidong Duan2( )
Institute of Chemical Biology and Nanomedicine (ICBN), College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
School of Physics and Electronics, Central South University, Changsha 410083, China

Abstract

Quasi-one-dimensional ZrS3 nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy, stemming from the low symmetry in the crystal structure. However, the conventional chemical vapor transport method for synthesizing bulk ZrS3 is limited by morphology and size controllability. It is highly desirable to propose a facile way to precisely synthesize ZrS3 nanoflakes. In this work, the chemical vapor deposition method is proposed as a feasible way to synthesize ZrS3 nanoflakes. The effects of various substrates and temperatures on ZrS3 synthesis have been investigated. For the as-grown ZrS3, good crystallinity is confirmed with X-ray diffraction and transmission electron microscopy. The structure and interlayer coupling are investigated with Raman scattering spectroscopy. The strong in-plane anisotropy and interlayer coupling of the ZrS3 nanoflakes are illustrated with angle-resolved Raman spectroscopy and temperature-dependent Raman characterization, respectively. This study demonstrates a feasible way for the synthesis of transition metal trisulfides, which may shed new light on the research of other two-dimensional anisotropic transition metal materials.

Keywords: interlayer coupling, quasi-one-dimensional, ZrS3 nanoflakes, chemical vapor deposition method, in-plane anisotropy

References(38)

[1]

Pei, J. J.; Yang, J.; Yildirim, T.; Zhang, H.; Lu, Y. R. Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.

[2]

Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

[3]

Mateti, S.; Yang, K. Q.; Liu, X.; Huang, S. M.; Wang, J. T.; Li, L. H.; Hodgson, P.; Zhou, M. H.; He, J.; Chen, Y. Bulk hexagonal boron nitride with a quasi-isotropic thermal conductivity. Adv. Funct. Mater. 2018, 28, 1707556.

[4]

Patra, A.; Rout, C. S. Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: Synthesis, properties and applications. RSC Adv. 2020, 10, 36413–36438.

[5]

Wang, X. T.; Wu, K. D.; Blei, M.; Wang, Y.; Pan, L. F.; Zhao, K.; Shan, C. X.; Lei, M.; Cui, Y.; Chen, B. et al. Wei, Z. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv. Electron. Mater. 2019, 5, 1900419.

[6]

Wang, J. L.; Qiao, J. S.; Xu, K.; Chen, J. W.; Zhao, Y. D.; Qiu, B. C.; Lin, Z. Y.; Ji, W.; Chai, Y. Quasi one-dimensional van der Waals gold selenide with strong interchain interaction and giant magnetoresistance. Sci. Bull. 2020, 65, 1451–1459.

[7]

Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; van der Zant, H. S. J.; Álvarez, J. V.; D'Agosta, R. et al. TiS3 transistors with tailored morphology and electrical properties. Adv. Mater. 2015, 27, 2595–2601.

[8]

Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods, 2017, 1, 1700143.

[9]

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

[10]

Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.

[11]

An, C. H.; Xu, Z. H.; Shen, W. F.; Zhang, R. J.; Sun, Z. Y.; Tang, S. J.; Xiao, Y. F.; Zhang, D. H.; Sun, D.; Hu, X. D. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 2019, 13, 3310–3319.

[12]

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

[13]

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

[14]

Island, J. O.; Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; van der Zant, H. S. J.; D’Agosta, R. et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Mater. 2017, 4, 022003.

[15]

Bullett, D. W. Variation of electronic properties with structure of transition metal trichalcogenides. J. Phys. C: Solid State Phys. 1979, 12, 277–281.

[16]

Yu, X.; Wen, X. K.; Zhang, W. F.; Yang, L.; Wu, H.; Lou, X.; Xie, Z. J.; Liu, Y.; Chang, H. X. Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition. CrystEngComm 2019, 21, 5586–5594.

[17]

Jin, Y. D.; Li, X. X.; Yang, J. L. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys. 2015, 17, 18665–18669.

[18]

Tao, Y. R.; Wu, J. J.; Wu, X. C. Enhanced ultraviolet-visible light responses of phototransistors based on single and a few ZrS3 nanobelts. Nanoscale 2015, 7, 14292–14298.

[19]

Guo, J. Q.; Xiao, Z. Y.; Wu, Z. Y.; Liao, X. X.; Wan, S. Y.; Fu, X. W.; Zhou, Y. B. Quasi-1D ZrS3 as an anisotropic nano-reflector for manipulating light-matter interactions. Adv. Opt. Mater. 2022, 10, 2201030.

[20]

Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3 and ZrSe3. J. Phys. Chem. C 2016, 120, 4653–4659.

[21]

Pant, A.; Torun, E.; Chen, B.; Bhat, S.; Fan, X.; Wu, K. D.; Wright, D. P.; Peeters, F. M.; Soignard, E.; Sahin, H. et al. Strong dichroic emission in the pseudo one dimensional material ZrS3. Nanoscale 2016, 8, 16259–16265.

[22]

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

[23]

Zhang, H. M.; Li, Q. Q.; Hossain, M.; Li, B.; Chen, K. Q.; Huang, Z. W.; Yang, X. D.; Dang, W. Q.; Shu, W. N.; Wang, D. et al. Phase-selective synthesis of ultrathin FeTe nanoplates by controllable Fe/Te atom ratio in the growth atmosphere. Small 2021, 17, 2101616.

[24]

Yang, S. J.; Liu, K. L.; Han, W.; Li, L.; Wang, F. K.; Zhou, X.; Li, H. Q.; Zhai, T. Y. Salt-assisted growth of P-type Cu9S5 nanoflakes for P-N heterojunction photodetectors with high responsivity. Adv. Funct. Mater. 2020, 30, 1908382.

[25]

Jin, Y. Y.; Li, H. M.; Liu, S. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond. 2020, 41, 072901.

[26]

Mao, N. N.; Zhang, S. Q.; Wu, J. X.; Zhang, J.; Tong, L. M. Lattice vibration and Raman scattering in anisotropic black phosphorus crystals. Small Methods 2018, 2, 1700409.

[27]

Chenet, D. A.; Aslan, B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

[28]

Kong, W.; Bacaksiz, C.; Chen, B.; Wu, K. D.; Blei, M.; Fan, X.; Shen, Y. X.; Sahin, H.; Wright, D.; Narang, D. S. et al. Angle resolved vibrational properties of anisotropic transition metal trichalcogenide nanosheets. Nanoscale 2017, 9, 4175–4182.

[29]

Mao, N. N.; Lin, Y. X.; Bie, Y. Q.; Palacios, T.; Liang, L. B.; Saito, R.; Ling, X.; Kong, J.; Tisdale, W. A. Resonance-enhanced excitation of interlayer vibrations in atomically thin black phosphorus. Nano Lett. 2021, 21, 4809–4815.

[30]

Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Ou, Y.; Du, J. L.; Xiao, J. K.; Gao, L.; Shan, H. Y.; Luo, Y. et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280–3291.

[31]

Hu, J. Q.; Shi, X. H.; Wu, S. Q.; Ho, K. M.; Zhu, Z. Z. Dependence of electronic and optical properties of MoS2 multilayers on the interlayer coupling and van hove singularity. Nanoscale Res. Lett. 2019, 14, 288.

[32]

Hu, X. Z.; Huang, P.; Jin, B.; Zhang, X. W.; Li, H. Q.; Zhou, X.; Zhai, T. Y. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J. Am. Chem. Soc. 2018, 140, 12909–12914.

[33]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[34]

Dang, V. Q.; Al-Ali, K. The synthesis and investigation of the reversible conversion of layered ZrS2 and ZrS3. New J. Chem. 2020, 44, 7583–7590.

[35]

Li, L.; Gong, P. L.; Wang, W. K.; Deng, B.; Pi, L. J.; Yu, J.; Zhou, X.; Shi, X. Q.; Li, H. Q.; Zhai, T. Y. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano 2017, 11, 10264–10272.

[36]

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

[37]

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

[38]

Fang, Y. Q.; Wang, F. K.; Wang, R. Q.; Zhai, T. Y.; Huang, F. Q. 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 2021, 33, 2101505.

File
12274_2023_5695_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2023
Revised: 18 March 2023
Accepted: 28 March 2023
Published: 06 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

S. L. acknowledges the financial support from the National Natural Science Foundation of China (Nos. 22175060 and 21975067), and the Natural Science Foundation of Hunan Province of China (Nos. 2021JJ10014 and 2021JJ30092). Y. C. thanks Junqiang Yang for Raman scattering spectroscopy measurement, and S. L. and X. D. for the guidance on the experiment, and modifying the format of the paper.

Return