Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
The wind energy in cities cannot be exploited effectively because natural wind is unstable and complex. Therefore, a triboelectric-electromagnetic hybrid generator with swing-blade structures (SBS-TEHG) was designed to effectively harvest intermittent and continuous wind energy in an urban environment. First, the spring structure and base were considered to realize the maximum output performance of triboelectric nanogenerators. Then, the computational fluid dynamics method was applied to optimize the structure of the SBS-TEHG to improve its aerodynamic performance. The starting wind speed of the SBS-TEHG was 2 m/s, and its energy conversion efficiency was 9.04%, 159% higher than that of the SBS-TEHG without guide plates at 4 m/s. The results demonstrated that the SBS-TEHG lit 105 light-emitting diodes (LEDs) under the intermittent-wind harvesting mode at a wind frequency of 1 Hz when the single swing blade operated, while a wireless PM2.5 & PM10 sensor was powered by the SBS-TEHG after a period of operation under the continuous-wind harvesting mode. The findings of this study provide a novel solution for low-speed wind energy harvesting in cities and demonstrate the potential of SBS-TEHG as a distributed energy source.
Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.
Zhang, Z. H.; Jie, Y.; Zhu, J. Q.; Zhu, Z. Y.; Chen, H.; Lu, Q. X.; Zeng, Y. M.; Cao, X.; Wang, N.; Wang, Z. L. Paper triboelectric nanogenerator designed for continuous reuse and quick construction. Nano Res. 2022, 15, 1109–1114.
Liu, L.; Guo, X. G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.
Khandelwal, G.; Chandrasekhar, A.; Alluri, N. R.; Vivekananthan, V.; Maria Joseph Raj, N. P.; Kim, S. J. Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator. Appl. Energy 2018, 219, 338–349.
Men, C. B.; Liu, X. P.; Chen, Y.; Liu, S. Z.; Wang, S. T.; Gao, S. Y. Cotton-assisted dual rotor-stator triboelectric nanogenerator for real-time monitoring of crop growth environment. Nano Energy 2022, 101, 107578.
Mu, J. L.; Zou, J.; Song, J. S.; He, J.; Hou, X. J.; Yu, J. B.; Han, X. T.; Feng, C. P.; He, H. C.; Chou, X. J. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers. Manage. 2022, 254, 115151.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.
Cheng, T. H.; Gao, Q.; Wang, Z. L. The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 2019, 4, 1800588.
Wang, Z. L. On the expanded Maxwell’s equations for moving charged media system-general theory, mathematical solutions and applications in TENG. Mater. Today 2022, 52, 348–363.
Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.
Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.
Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.
Wang, B. C.; Zhai, X. Y.; Wei, X. L.; Shi, Y. P.; Huo, X. Q.; Li, R. N.; Wu, Z. Y.; Wang, Z. L. A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems. Nano Res. 2022, 15, 8435–8441.
Xu, Y. H.; Yang, W. X.; Lu, X. H.; Yang, Y. F.; Li, J. P.; Wen, J. M.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 2021, 15, 16368–16375.
Gao, Q.; Xu, Y. H.; Yu, X.; Jing, Z. X.; Cheng, T. H.; Wang, Z. L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 2022, 16, 6781–6788.
Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2202627.
Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.
Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.
Yong, S.; Wang, H. Q.; Lin, Z. N.; Li, X. S.; Zhu, B. Y.; Yang, L. J.; Ding, W. B.; Liao, R. J.; Wang, J. Y.; Wang, Z. L. Environmental self-adaptive wind energy harvesting technology for self-powered system by triboelectric-electromagnetic hybridized nanogenerator with dual-channel power management topology. Adv. Energy Mater. 2022, 12, 2202469.
Chen, H.; Lu, Q. X.; Cao, X.; Wang, N.; Wang, Z. L. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2022, 15, 2505–2511.
Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.
Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.
He, C.; Zhu, W. J.; Gu, G. Q.; Jiang, T.; Xu, L.; Chen, B. D.; Han, C. B.; Li, D. C.; Wang, Z. L. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 2018, 11, 1157–1164.
Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.
Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.
Luo, Y. J.; Chen, P. F.; Cao, L. N. Y.; Xu, Z. J.; Wu, Y.; He, G. F.; Jiang, T.; Wang, Z. L. Durability improvement of breeze-driven triboelectric-electromagnetic hybrid nanogenerator by a travel-controlled approach. Adv. Funct. Mater. 2022, 32, 2205710.
Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Gao, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.
Gui, Y. G.; Wang, Y. F.; He, S. S.; Yang, J. C. Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator. Energy Convers. Manage. 2022, 269, 116098.
Xin, C. F.; Guo, H. Y.; Shen, F.; Peng, Y.; Xie, S. R.; Li, Z. J.; Zhang, Q. A hybrid generator with electromagnetic transduction for improving the power density of triboelectric nanogenerators and scavenging wind energy. Adv. Mater. Technol. 2022, 7, 2101610.
Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.
Elsakka, M. M.; Ingham, D. B.; Ma, L.; Pourkashanian, M. CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers. Manage. 2019, 182, 154–165.
Sun, X. J.; Zhu, J. Y.; Li, Z. J.; Sun, G. X. Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers. Energy 2021, 215, 119177.
Shukla, V.; Kaviti, A. K. Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models. Energy 2017, 126, 766–795.
Dong, L.; Zhu, J. Y.; Xie, P.; Cheng, T. H. Numerical and experimental study on power extraction performance of a semi-active flapping airfoil with bioinspired dimple. Energy Rep. 2022, 8, 13753–13765.
Le, T. Q.; Ko, J. H. Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations. Renewable Energy 2015, 80, 275–285.