AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Radical organometallic nanocages with redox switchable poly-NHC ligands

Guang-Feng Jin1,§Yan-Zhen Zhang1,§Le Yu1Wei-Ling Jiang1Yang Li1Li-Ying Sun1Peng Li2Ying-Feng Han1( )
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China

§ Guang-Feng Jin and Yan-Zhen Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

The formation of a series of poly-NHC-based (NHC = N-heterocyclic carbene) organometallic nanocages 3a3c in which two triarylamine units are linked by different numbers of phenyl bridges, as a scaffold to investigating how redox-stimulus induce their radicals 3a2+3c2+. The electronic structures were investigated by various experiments assisted by X-ray analysis and theoretical calculations.

Abstract

Developing discrete radical organometallic nanocages is essential for fabricating functional materials. In this study, we construct a series of poly-NHC-based (NHC = N-heterocyclic carbene) organometallic nanocages 3a3c with different sizes by employing redox-active bis(triarylamine) derivatives with different π-conjugated spacers as building blocks. The varied sizes of nanocages 3a3c modulate the distance of the redox-active centers and reversibly convert them to radical nanocages 3a2+3c2+ through chemical and electrochemical oxidation. Radical nanocages 3a2+3c2+ display clear bond and angle alteration and retention of their three-dimensional topologies. This work not only merely proves that these nanocages are excellent stimulus-responsive materials but also opens a door to the rational design of novel radical organometallic nanocages.

Electronic Supplementary Material

Download File(s)
12274_2023_5690_MOESM10_ESM.cif (2.3 MB)
12274_2023_5690_MOESM11_ESM.cif (2.1 MB)
12274_2023_5690_MOESM12_ESM.cif (2.2 MB)
12274_2023_5690_MOESM13_ESM.cif (4 MB)
12274_2023_5690_MOESM1_ESM.pdf (10.4 MB)
12274_2023_5690_MOESM2_ESM.pdf (101.7 KB)
12274_2023_5690_MOESM3_ESM.pdf (104.3 KB)
12274_2023_5690_MOESM4_ESM.pdf (103 KB)
12274_2023_5690_MOESM5_ESM.pdf (114.4 KB)
12274_2023_5690_MOESM6_ESM.pdf (92.1 KB)
12274_2023_5690_MOESM7_ESM.pdf (110.1 KB)
12274_2023_5690_MOESM8_ESM.cif (973.3 KB)
12274_2023_5690_MOESM9_ESM.cif (1.9 MB)

References

[1]

Guo, J. L.; Yang, C. L.; Zhao, Y. L. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 2022, 55, 1160–1170.

[2]

Blanco-Gómez, A.; Cortón, P.; Barravecchia, L.; Neira, I.; Pazos, E.; Peinador, C.; García, M. D. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev. 2020, 49, 3834–3862.

[3]

Chen, L. J.; Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 2018, 51, 2699–2710.

[4]

Kakuta, T.; Yamagishi, T. A.; Ogoshi, T. Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc. Chem. Res. 2018, 51, 1656–1666.

[5]

Han, J. Q.; Chun, Y. K.; Chan, S. L.; Cheng, S. C.; Yiu, S. M.; Ko, C. C. Development of dual phosphorescent materials based on multiple stimuli-responsive Ir(III) acyclic carbene complexes. CCS Chem. 2022, 4, 2354–2368.

[6]

Grzelczak, M.; Liz-Marzán, L. M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361.

[7]

Zhou, Z. X.; Vázquez-González, M.; Willner, I. Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 2021, 50, 4541–4563.

[8]

Li, Y.; Yang, T. F.; Li, N.; Bai, S.; Li, X.; Ma, L. L.; Wang, K.; Zhang, Y. M.; Han, Y. F. Multistimuli-responsive fluorescent organometallic assemblies based on mesoionic carbene-decorated tetraphenylethene ligands and their applications in cell imaging. CCS Chem. 2022, 4, 732–743.

[9]

Song, B. L.; Zhang, X. H.; Qiao, Z. Y.; Wang, H. Peptide-based AIEgens: From molecular design, stimuli responsiveness to biomedical application. CCS Chem. 2022, 4, 437–455.

[10]

Wang, X. H.; Wang, X. Y.; Jin, S. X.; Muhammad, N.; Guo, Z. J. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019, 119, 1138–1192.

[11]

Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070–2078.

[12]

Wu, J. T.; Lin, H. T.; Liou, G. S. Synthesis and characterization of novel triarylamine derivatives with dimethylamino substituents for application in optoelectronic devices. ACS Appl. Mater. Interfaces 2019, 11, 14902–14908.

[13]

Baroncini, M.; Silvi, S.; Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 2020, 120, 200–268.

[14]

McCune, J. A.; Kuehnel, M. F.; Reisner, E.; Scherman, O. A. Stimulus-mediated ultrastable radical formation. Chem 2020, 6, 1819–1830.

[15]

Zhang, H. N.; Yu, W. B.; Lin, Y. J.; Jin, G. X. Stimuli-responsive topological transformation of a molecular borromean ring via controlled oxidation of thioether moieties. Angew. Chem., Int. Ed. 2021, 60, 15466–15471.

[16]

Krykun, S.; Dekhtiarenko, M.; Canevet, D.; Carré, V.; Aubriet, F.; Levillain, E.; Allain, M.; Voitenko, Z.; Sallé, M.; Goeb, S. Metalla-assembled electron-rich tweezers: Redox-controlled guest release through supramolecular dimerization. Angew. Chem., Int. Ed. 2020, 59, 716–720.

[17]

Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M.; Yoshizawa, M. An M2L4 molecular capsule with a redox switchable polyradical shell. Angew. Chem., Int. Ed. 2016, 55, 15031–15034.

[18]

Klajn, R.; Olson, M. A.; Wesson, P. J.; Fang, L.; Coskun, A.; Trabolsi, A.; Soh, S.; Stoddart, J. F.; Grzybowski, B. A. Dynamic hook-and-eye nanoparticle sponges. Nat. Chem. 2009, 1, 733–738.

[19]

Cai, K.; Cui, B. B.; Song, B.; Wang, H.; Qiu, Y. Y.; Jones, L. O.; Liu, W. Q.; Shi, Y.; Vemuri, S.; Shen, D. K. et al. Radical cyclic [3]daisy chains. Chem 2021, 7, 174–189.

[20]

Moulin, E.; Armao IV, J. J.; Giuseppone, N. Triarylamine-based supramolecular polymers: Structures, dynamics, and functions. Acc. Chem. Res. 2019, 52, 975–983.

[21]

Hirao, Y.; Urabe, M.; Ito, A.; Tanaka, K. Intramolecular spin transfer in a spiro-fused bis(triarylamine). Angew. Chem., Int. Ed. 2007, 46, 3300–3303.

[22]

Zheng, S. J.; Barlow, S.; Risko, C.; Kinnibrugh, T. L.; Khrustalev, V. N.; Jones, S. C.; Antipin, M. Y.; Tucker, N. M.; Timofeeva, T. V.; Coropceanu, V. et al. Isolation and crystal structures of two singlet bis(triarylamine) dications with nonquinoidal geometries. J. Am. Chem. Soc. 2006, 128, 1812–1817.

[23]

Lambert, C.; Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434–8442.

[24]

Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor, S.; Kriegisch, V.; Nöll, G.; Stahl, R.; Lambert, C.; Leusser, D. et al. How delocalized is N,N,N’,N’-tetraphenylphenylenediamine radical cation. An experimental and theoretical study on the electronic and molecular structure. J. Am. Chem. Soc. 2004, 126, 7834–7845.

[25]

Lambert, C.; Nöll, G.; Schelter, J. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nat. Mater. 2002, 1, 69–73.

[26]

Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N. E.; Durivage, J. C.; Brédas, J. L. Electronic coupling in tetraanisylarylenediamine mixed-valence systems: The interplay between bridge energy and geometric factors. J. Am. Chem. Soc. 2005, 127, 8508–8516.

[27]

Tan, G. W.; Wang, X. P. Isolable bis(triarylamine) dications: Analogues of Thiele’s, Chichibabin’s, and Müller’s hydrocarbons. Acc. Chem. Res. 2017, 50, 1997–2006.

[28]

Gao, W. X.; Feng, H. J.; Guo, B. B.; Lu, Y.; Jin, G. X. Coordination-directed construction of molecular links. Chem. Rev. 2020, 120, 6288–6325.

[29]

Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46, 2555–2576.

[30]

Sinha, N.; Hahn, F. E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands. Acc. Chem. Res. 2017, 50, 2167–2184.

[31]

Shi, W. J.; Li, X.; Li, P.; Han, Y. F. Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide. Nano Res. 2022, 15, 2655–2660.

[32]

Han, Y. F.; Jin, G. X. Half-sandwich iridium- and rhodium-based organometallic architectures: Rational design, synthesis, characterization, and applications. Acc. Chem. Res. 2014, 47, 3571–3579.

[33]

Sun, Y.; Chen, C. Y.; Liu, J. B.; Stang, P. J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 2020, 49, 3889–3919.

[34]

Xu, L.; Wang, Y. X.; Chen, L. J.; Yang, H. B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: From structure to functions. Chem. Soc. Rev. 2015, 44, 2148–2167.

[35]

Kudo, K.; Ide, T.; Kishida, N.; Yoshizawa, M. Preparation of a multicarbazole-based nanocapsule capable of largely modulating guest spectroscopic properties in water. Angew. Chem., Int. Ed. 2021, 60, 10552–10556.

[36]

Li, Y. R.; Rajasree, S. S.; Lee, G. Y.; Yu, J. R.; Tang, J. H.; Ni, R. D.; Li, G. G.; Houk, K. N.; Deria, P.; Stang, P. J. Anthracene-triphenylamine-based platinum(II) metallacages as synthetic light-harvesting assembly. J. Am. Chem. Soc. 2021, 143, 2908–2919.

[37]

Zhou, J.; Yu, G. C.; Yang, J.; Shi, B. B.; Ye, B. Y.; Wang, M. B.; Huang, F. H.; Stang, P. J. Polymeric nanoparticles integrated from discrete organoplatinum(II) metallacycle by stepwise post-assembly polymerization for synergistic cancer therapy. Chem. Mater. 2020, 32, 4564–4573.

[38]

Ding, Y.; Tong, Z. R.; Jin, L. L.; Ye, B. L.; Zhou, J.; Sun, Z. Q.; Yang, H.; Hong, L. J.; Huang, F. H.; Wang, W. L. et al. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy. Adv. Mater. 2022, 34, 2106388.

[39]

Saha, M. L.; Yan, X. Z.; Stang, P. J. Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and metallacages: Fluorescence and its applications. Acc. Chem. Res. 2016, 49, 2527–2539.

[40]

Ibáñez, S.; Poyatos, M.; Peris, E. N-heterocyclic carbenes: A door open to supramolecular organometallic chemistry. Acc. Chem. Res. 2020, 53, 1401–1413.

[41]

Gan, M. M.; Liu, J. Q.; Zhang, L.; Wang, Y. Y.; Hahn, F. E.; Han, Y. F. Preparation and post-assembly modification of metallosupramolecular assemblies from poly(N-heterocyclic carbene) ligands. Chem. Rev. 2018, 118, 9587–9641.

[42]

Li, Y.; Yu, J. G.; Ma, L. L.; Li, M.; An, Y. Y.; Han, Y. F. Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci. China Chem. 2021, 64, 701–718.

[43]

Zhang, Z. E.; An, Y. Y.; Zheng, B.; Chang, J. P.; Han, Y. F. Hierarchical self-assembly of crown ether based metal-carbene cages into multiple stimuli-responsive cross-linked supramolecular metallogel. Sci. China Chem. 2021, 64, 1177–1183.

[44]

Ibáñez, S.; Vicent, C.; Peris, E. Clippane: A mechanically interlocked molecule (MIM) based on molecular tweezers. Angew. Chem., Int. Ed. 2022, 61, e202112513.

[45]

Nishad, R. C.; Kumar, S.; Rit, A. Self-assembly of a bis-NHC ligand and coinage metal ions: Unprecedented metal-driven chemistry between the tri- and tetranuclear species. Angew. Chem., Int. Ed. 2022, 61, e202206788.

[46]

Zheng, X.; Wang, X. Y.; Qiu, Y. F.; Li, Y. T.; Zhou, C. K.; Sui, Y. X.; Li, Y. Z.; Ma, J.; Wang, X. P. One-electron oxidation of an organic molecule by B(C6F5)3; Isolation and structures of stable non-para-substituted triarylamine cation radical and bis(triarylamine) dication diradicaloid. J. Am. Chem. Soc. 2013, 135, 14912–14915.

[47]

Su, Y. T.; Wang, X. Y.; Zheng, X.; Zhang, Z. C.; Song, Y.; Sui, Y. X.; Li, Y. Z.; Wang, X. P. Tuning ground states of bis(triarylamine) dications: From a closed-shell singlet to a diradicaloid with an excited triplet state. Angew. Chem., Int. Ed. 2014, 53, 2857–2861.

[48]

Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011–7088.

[49]

Yokoyama, Y.; Sakamaki, D.; Ito, A.; Tanaka, K.; Shiro, M. A triphenylamine double-decker: From a delocalized radical cation to a diradical dication with an excited triplet state. Angew. Chem., Int. Ed. 2012, 51, 9403–9406.

[50]

Ito, A.; Ono, Y.; Tanaka, K. The tetraaza[1.1. 1.1]m, p, m, p-cyclophane dication: A triplet diradical having two m-phenylenediamine radical cations linked by twisted benzenes. Angew. Chem., Int. Ed. 2000, 39, 1072–1075.

[51]

Wang, W. Q.; Wang, L.; Chen, S.; Yang, W. B.; Zhang, Z. C.; Wang, X. P. Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: From a monomer to a dimer. Sci. China Chem. 2018, 61, 300–305.

Nano Research
Pages 10678-10683
Cite this article:
Jin G-F, Zhang Y-Z, Yu L, et al. Radical organometallic nanocages with redox switchable poly-NHC ligands. Nano Research, 2023, 16(7): 10678-10683. https://doi.org/10.1007/s12274-023-5690-2
Topics:

645

Views

3

Crossref

4

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 02 February 2023
Revised: 15 March 2023
Accepted: 26 March 2023
Published: 12 May 2023
© Tsinghua University Press 2023
Return