Journal Home > Volume 16 , Issue 12

The rational design of efficient, low cost, and durable catalysts is critical for the industrial applications of electrocatalytic hydrogen production. A key step towards the structure design of high-performance catalysts for hydrogen evolution reaction (HER) relies on the in situ identification of the catalytic active sites in the process of HER, which is of great challenge. In this review, we summarize the recent advances on the in situ investigation of the active sites on low dimensional catalysts for HER. We highlight the characterization techniques used for this purpose, including scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), electrochemical scanning tunneling microscopy (EC-STM), in situ liquid phase transmission electron microscopy (LP-TEM), and in situ spectroscopic tools. We conclude with an overview of the main technical limitations for the current approaches and give an outlook to future opportunities in this emerging field.


menu
Abstract
Full text
Outline
About this article

In situ identification of active sites during electrocatalytic hydrogen evolution

Show Author's information Dongge Wang1,2Juanxia Wu1,2Liying Jiao3( )Liming Xie1,2( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

The rational design of efficient, low cost, and durable catalysts is critical for the industrial applications of electrocatalytic hydrogen production. A key step towards the structure design of high-performance catalysts for hydrogen evolution reaction (HER) relies on the in situ identification of the catalytic active sites in the process of HER, which is of great challenge. In this review, we summarize the recent advances on the in situ investigation of the active sites on low dimensional catalysts for HER. We highlight the characterization techniques used for this purpose, including scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), electrochemical scanning tunneling microscopy (EC-STM), in situ liquid phase transmission electron microscopy (LP-TEM), and in situ spectroscopic tools. We conclude with an overview of the main technical limitations for the current approaches and give an outlook to future opportunities in this emerging field.

Keywords: electrocatalyst, hydrogen evolution reaction, in situ, active sites

References(83)

[1]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[2]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[3]

Norskov, J. K.; Christensen, C. H. Toward efficient hydrogen production at surfaces. Science 2006, 312, 1322–1323.

[4]

Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594.

[5]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution:  MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[6]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[7]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[8]

Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.

[9]

Zhou, Y.; Pondick, J. V.; Silva, J. L.; Woods, J. M.; Hynek, D. J.; Matthews, G.; Shen, X.; Feng, Q. L.; Liu, W.; Lu, Z. X. et al. Unveiling the interfacial effects for enhanced hydrogen evolution reaction on MoS2/WTe2 hybrid structures. Small 2019, 15, 1900078.

[10]

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[11]

Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.

[12]

Ni, B.; Wang, X. Face the edges: Catalytic active sites of nanomaterials. Adv. Sci. 2015, 2, 1500085.

[13]

Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89–111.

[14]

Sun, T.; Zhang, H. Y.; Wang, X.; Liu, J.; Xiao, C. X.; Nanayakkara, S. U.; Blackburn, J. L.; Mirkin, M. V.; Miller, E. M. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets. Nanoscale Horiz. 2019, 4, 619–624.

[15]

Bentley, C. L.; Kang, M.; Unwin, P. R. Nanoscale structure dynamics within electrocatalytic materials. J. Am. Chem. Soc. 2017, 139, 16813–16821.

[16]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[17]

Kim, J.; Park, A.; Kim, J.; Kwak, S. J.; Lee, J. Y.; Lee, D.; Kim, S.; Choi, B. K.; Kim, S.; Kwag, J. et al. Observation of H2 evolution and electrolyte diffusion on MoS2 monolayer by in situ liquid-phase transmission electron microscopy. Adv. Mater. 2022, 34, 2206066.

[18]

Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

[19]

Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132–138.

[20]

Sun, P.; Laforge, F. O.; Mirkin, M. V. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 2007, 9, 802–823.

[21]

Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234–13278.

[22]

Wittstock, G.; Burchardt, M.; Pust, S. E.; Shen, Y.; Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem., Int. Ed. 2007, 46, 1584–1617.

[23]

Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Vidal-Iglesias, F. J.; Aldaz, A.; Montiel, V.; Herrero, E. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J. Am. Chem. Soc. 2010, 132, 5622–5624.

[24]

Leonard, K. C.; Bard, A. J. The study of multireactional electrochemical interfaces via a tip generation/substrate collection mode of scanning electrochemical microscopy: The hydrogen evolution reaction for Mn in acidic solution. J. Am. Chem. Soc. 2013, 135, 15890–15896.

[25]

Li, F.; Bertoncello, P.; Ciani, I.; Mantovani, G.; Unwin, P. R. Incorporation of functionalized palladium nanoparticles within ultrathin nafion films: A nanostructured composite for electrolytic and redox-mediated hydrogen evolution. Adv. Funct. Mater. 2008, 18, 1685–1693.

[26]

Ahn, H. S.; Bard, A. J. Electrochemical surface interrogation of a MoS2 hydrogen-evolving catalyst: In situ determination of the surface hydride coverage and the hydrogen evolution kinetics. J. Phys. Chem. Lett. 2016, 7, 2748–2752.

[27]

Li, H.; Du, M. S.; Mleczko, M. J.; Koh, A. L.; Nishi, Y.; Pop, E.; Bard, A. J.; Zheng, X. L. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 5123–5129.

[28]

Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120–14123.

[29]

Abad, J. M.; Tesio, A. Y.; Martínez-Periñán, E.; Pariente, F.; Lorenzo, E. Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy. Nano Res. 2018, 11, 4232–4244.

[30]

Xin, S. L.; Liu, Z. Q.; Ma, L.; Sun, Y.; Xiao, C. H.; Li, F.; Du, Y. P. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Res. 2016, 9, 3795–3811.

[31]

Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical-atomic force microscopy. Anal. Chem. 2000, 72, 276–285.

[32]

Shi, X. N.; Qing, W. H.; Marhaba, T.; Zhang, W. Atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives. Electrochim. Acta 2020, 332, 135472.

[33]

Ebejer, N.; Schnippering, M.; Colburn, A. W.; Edwards, M. A.; Unwin, P. R. Localized high resolution electrochemistry and multifunctional imaging: Scanning electrochemical cell microscopy. Anal. Chem. 2010, 82, 9141–9145.

[34]

Snowden, M. E.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O’Connell, M. A.; Colburn, A. W.; Unwin, P. R. Scanning electrochemical cell microscopy: Theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal. Chem. 2012, 84, 2483–2491.

[35]

Aaronson, B. D. B.; Chen, C. H.; Li, H. J.; Koper, M. T. M.; Lai, S. C. S.; Unwin, P. R. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: Visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction. J. Am. Chem. Soc. 2013, 135, 3873–3880.

[36]

Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

[37]

Bentley, C. L.; Andronescu, C.; Smialkowski, M.; Kang, M.; Tarnev, T.; Marler, B.; Unwin, P. R.; Apfel, U. P.; Schuhmann, W. Local surface structure and composition control the hydrogen evolution reaction on iron nickel sulfides. Angew. Chem., Int. Ed. 2018, 57, 4093–4097.

[38]

Takahashi, Y.; Kobayashi, Y.; Wang, Z. Q.; Ito, Y.; Ota, M.; Ida, H.; Kumatani, A.; Miyazawa, K.; Fujita, T.; Shiku, H. et al. High-resolution electrochemical mapping of the hydrogen evolution reaction on transition-metal dichalcogenide nanosheets. Angew. Chem., Int. Ed. 2020, 59, 3601–3608.

[39]

Tao, B. L.; Unwin, P. R.; Bentley, C. L. Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides. J. Phys. Chem. C 2020, 124, 789–798.

[40]

Schumacher, S.; Madauß, L.; Liebsch, Y.; Tetteh, E. B.; Varhade, S.; Schuhmann, W.; Schleberger, M.; Andronescu, C. Revealing the heterogeneity of large-area MoS2 layers in the electrocatalytic hydrogen evolution reaction. ChemElectroChem 2022, 9, e202200586.

[41]

Liu, G.; Hao, L. Z.; Li, H.; Zhang, K. M.; Yu, X.; Li, D.; Zhu, X. D.; Hao, D. N.; Ma, Y. Q.; Ma, L. Topography mapping with scanning electrochemical cell microscopy. Anal. Chem. 2022, 94, 5248–5254.

[42]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[43]

Daviddi, E.; Gonos, K. L.; Colburn, A. W.; Bentley, C. L.; Unwin, P. R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis. Anal. Chem. 2019, 91, 9229–9237.

[44]

Wang, Y. F.; Gordon, E.; Ren, H. Mapping the nucleation of H2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy. J. Phys. Chem. Lett. 2019, 10, 3887–3892.

[45]

Liu, Y. L.; Jin, C.; Liu, Y. W.; Ruiz, K. H.; Ren, H.; Fan, Y. C.; White, H. S.; Chen, Q. J. Visualization and quantification of electrochemical H2 bubble nucleation at Pt, Au, and MoS2 substrates. ACS Sens. 2021, 6, 355–363.

[46]

O’Connell, M. A.; Lewis, J. R.; Wain, A. J. Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles. Chem. Commun. 2015, 51, 10314–10317.

[47]

Kang, M.; Perry, D.; Bentley, C. L.; West, G.; Page, A.; Unwin, P. R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles. ACS Nano 2017, 11, 9525–9535.

[48]

Momotenko, D.; McKelvey, K.; Kang, M.; Meloni, G. N.; Unwin, P. R. Simultaneous interfacial reactivity and topography mapping with scanning ion conductance microscopy. Anal. Chem. 2016, 88, 2838–2846.

[49]

Schlaup, C.; Horch, S. EC-STM study of the initial stages of the electrochemical Au (111)-Cd alloy formation. Surf. Sci. 2015, 632, 126–134.

[50]

Baricuatro, J. H.;Kim, Y.-G.;Korzeniewski, C. L.; Soriaga, M. P. Tracking the prelude of the electroreduction of carbon monoxide via its interaction with Cu(100): Studies by operando scanning tunneling microscopy and infrared spectroscopy. Catal. Today 2020, 358, 210–214.

[51]

Mitterreiter, E.; Liang, Y. C.; Golibrzuch, M.; McLaughlin, D.; Csoklich, C.; Bartl, J. D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A. S. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. npj 2D Mater. Appl. 2019, 3, 25.

[52]

Feng, H. F.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 2021, 4, 249–268.

[53]

Wang, X.; Wang, Y. Q.; Feng, Y. C.; Wang, D.; Wan, L. J. Insights into electrocatalysis by scanning tunnelling microscopy. Chem. Soc. Rev. 2021, 50, 5832–5849.

[54]
Liao, M. S.; Zhu, Q. M.; Li, S. H.; Li, Q. Q.; Tao, Z. T.; Fu, Y. C. In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets. Nano Res., in press, https://doi.org/10.1007/s12274-022-5170-0.
[55]

Zheng, W. R.; Lee, L. Y. S. Observing electrocatalytic processes via in situ electrochemical scanning tunneling microscopy: Latest advances. Chem. Asian J. 2022, 17, e202200384.

[56]

Cai, Z. F.; Wang, X.; Wang, D.; Wan, L. J. Cobalt-porphyrin-catalyzed oxygen reduction reaction: A scanning tunneling microscopy study. ChemElectroChem 2016, 3, 2048–2051.

[57]

Wang, X.; Cai, Z. F.; Wang, D.; Wan, L. J. Molecular evidence for the catalytic process of cobalt porphyrin catalyzed oxygen evolution reaction in alkaline solution. J. Am. Chem. Soc. 2019, 141, 7665–7669.

[58]

Zhu, G. Z.; Prabhudev, S.; Yang, J.; Gabardo, C. M.; Botton, G. A.; Soleymani, L. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling. J. Phys. Chem. C 2014, 118, 22111–22119.

[59]

Shi, F. L.; Li, F.; Ma, Y. L.; Zheng, F. Y.; Feng, R.; Song, C. Y.; Tao, P.; Shang, W.; Deng, T.; Wu, J. B. In situ transmission electron microscopy study of nanocrystal formation for electrocatalysis. ChemNanoMat 2019, 5, 1439–1455.

[60]

Hwang, S.; Chen, X. B.; Zhou, G. W.; Su, D. In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. 2020, 10, 1902105.

[61]

Yang, J.; Choi, M. K.; Sheng, Y. W.; Jung, J.; Bustillo, K.; Chen, T. X.; Lee, S. W.; Ercius, P.; Kim, J. H.; Warner, J. H. et al. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer. Nano Lett. 2019, 19, 1788–1795.

[62]

Dunn, G.; Adiga, V. P.; Pham, T.; Bryant, C.; Horton-Bailey, D. J.; Belling, J. N.; LaFrance, B.; Jackson, J. A.; Barzegar, H. R.; Yuk, J. M. et al. Graphene-sealed flow cells for in situ transmission electron microscopy of liquid samples. ACS Nano 2020, 14, 9637–9643.

[63]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y.; Zhang, W.; Wu, Y.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[64]

Chen, H. Q.; Zou, L.; Wei, D. Y.; Zheng, L. L.; Wu, Y. F.; Zhang, H.; Li, J. F. In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chin. J. Catal. 2022, 43, 33–46.

[65]

Knop-Gericke, A.; Kleimenov, E.; Hävecker, M.; Blume, R.; Teschner, D.; Zafeiratos, S.; Schlögl, R.; Bukhtiyarov, V. I.; Kaichev, V. V.; Prosvirin, I. P. et al. X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Acad. Press 2009, 52, 213–272.

[66]

Papp, C.; Steinrück, H. P. In situ high-resolution X-ray photoelectron spectroscopy-fundamental insights in surface reactions. Surf. Sci. Rep. 2013, 68, 446–487.

[67]

Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

[68]

Casalongue, H. G. S.; Benck, J. D.; Tsai, C.; Karlsson, R. K. B.; Kaya, S.; Ng, M. L.; Pettersson, L. G. M.; Abild-Pedersen, F.; Nørskov, J. K.; Ogasawara, H. et al. Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J. Phys. Chem. C 2014, 118, 29252–29259.

[69]

Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V. K.; Hu, X. L.; Yano, J. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 2015, 137, 314–321.

[70]

Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan, C. Z.; Liu, R. D.; Chen, S. G. et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 2018, 11, 2945–2953.

[71]

Bau, J. A.; Haspel, H.; Ould-Chikh, S.; Aguilar-Tapia, A.; Hazemann, J. L.; Idriss, H.; Takanabe, K. On the reconstruction of NiMo electrocatalysts by operando spectroscopy. J. Mater. Chem. A 2019, 7, 15031–15035.

[72]

Timoshenko, J.; Cuenya, B. R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882–961.

[73]

Kumar, A.; Vashistha, V. K.; Das, D. K.; Ibraheem, S.; Yasin, G.; Iqbal, R.; Nguyen, T. A.; Gupta, R. K.; Islam, R. M-N-C-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: Activity descriptors, active sites identification, challenges and prospects. Fuel 2021, 304, 121420.

[74]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

[75]

Shen, S. J.; Hu, Z. Y.; Zhang, H. H.; Song, K.; Wang, Z. P.; Lin, Z. P.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem., Int. Ed. 2022, 61, e202206460.

[76]

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

[77]

Hsiao, F. H.; Chung, C. C.; Chiang, C. H.; Feng, W. N.; Tzeng, W. Y.; Lin, H. M.; Tu, C. M.; Wu, H. L.; Wang, Y. H.; Woon, W. Y. et al. Using exciton/trion dynamics to spatially monitor the catalytic activities of MoS2 during the hydrogen evolution reaction. ACS Nano 2022, 16, 4298–4307.

[78]

Zhao, X. N.; Zhou, X. L.; Yang, S. Y.; Min, Y.; Chen, J. J.; Liu, X. W. Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nat. Commun. 2022, 13, 7869.

[79]

Zhou, X. C.; Andoy, N. M.; Liu, G. K.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237–241.

[80]

Andoy, N. M.; Zhou, X. C.; Choudhary, E.; Shen, H.; Liu, G. K.; Chen, P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 2013, 135, 1845–1852.

[81]

Chen, G. Q.; Zou, N. M.; Chen, B.; Sambur, J. B.; Choudhary, E.; Chen, P. Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent. Sci. 2017, 3, 1189–1197.

[82]

Chen, T.; Chen, S.; Zhang, Y. W.; Qi, Y. F.; Zhao, Y. Z.; Xu, W. L.; Zeng, J. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals. Angew. Chem., Int. Ed. 2016, 55, 1839–1843.

[83]

Chen, T.; Chen, S.; Song, P.; Zhang, Y. W.; Su, H. Y.; Xu, W. L.; Zeng, J. Single-molecule nanocatalysis reveals facet-dependent catalytic kinetics and dynamics of pallidium nanoparticles. ACS Catal. 2017, 7, 2967–2972.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2023
Revised: 23 March 2023
Accepted: 23 March 2023
Published: 13 May 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the support from the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Key Research and Development Program of China (No. 2020YFB2205901), the National Natural Science Foundation of China (No. 22105049), and Tsinghua-Toyota Joint Research Fund and Tsinghua-Jiangyin Innovation Special Fund (No. TJISF).

Return