Journal Home > Volume 16 , Issue 7

The active site engineering of electrocatalysts, as one of the most economical and technological approaches, is a promising strategy to enhance the intrinsic activity and selectivity towards electrochemical CO2 reduction reaction. Herein, an indium-based porphyrin framework (In-TCPP) with a well-defined structure, highly dispersed catalytic center, and good stability was constructed for efficient CO2-to-formate conversion. In-TCPP could achieve a high Faraday efficiency for formate (90%) and a cathodic energy efficiency of 63.8% in flow cells. In situ attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculation confirm that the crucial intermediate is *COOH species which contributes to the formation of formate. This work is expected to provide novel insights into the precise design of active sites for high-performance electrocatalysts towards electrochemical CO2 reduction reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large π-conjugated indium-based metal-organic frameworks for high‐performance electrochemical conversion of CO2

Show Author's information Zengqiang Gao1Yue Gong4Yating Zhu1Junjie Li2Li Li1Yongxia Shi1Man Hou1Xuejiao J. Gao2( )Zhicheng Zhang1( )Wenping Hu1,3,5( )
Department of Chemistry, School of Science; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

Abstract

The active site engineering of electrocatalysts, as one of the most economical and technological approaches, is a promising strategy to enhance the intrinsic activity and selectivity towards electrochemical CO2 reduction reaction. Herein, an indium-based porphyrin framework (In-TCPP) with a well-defined structure, highly dispersed catalytic center, and good stability was constructed for efficient CO2-to-formate conversion. In-TCPP could achieve a high Faraday efficiency for formate (90%) and a cathodic energy efficiency of 63.8% in flow cells. In situ attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculation confirm that the crucial intermediate is *COOH species which contributes to the formation of formate. This work is expected to provide novel insights into the precise design of active sites for high-performance electrocatalysts towards electrochemical CO2 reduction reaction.

Keywords: metal-organic framework, electrochemical CO2 reduction, porphyrin, indium, formate

References(47)

[1]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[2]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[3]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[4]

Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

[5]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

[6]

Nguyen, T. N.; Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 2020, 49, 7488–7504.

[7]

Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.

[8]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[9]

Chu, S. L.; Kang, C.; Park, W.; Han, Y.; Hong, S.; Hao, L. D.; Zhang, H.; Lo, T. W. B.; Robertson, A. W.; Jung, Y. et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. SmartMat 2022, 3, 194–205.

[10]

Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.; Li, T.; Muntean, J. V.; Winans, R. E.; Liu, D. -J.; Xu, T. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[11]

Liu, F.; Fan, Z. X. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723–1772.

[12]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, 9120009.

[13]

Wang, J.; Zhang, Y. M.; Ma, Y. B.; Yin, J. W.; Wang, Y. H.; Fan, Z. X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials. ACS Mater. Lett. 2022, 4, 2058–2079.

[14]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[15]

Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

[16]

Wang, Y. N.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.

[17]

Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 2022, 65, 155–162.

[18]

Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

[19]

Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys. -Chim. Sin. 2022, 38, 2206020.

[20]

Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022, 15, 7861–7867.

[21]

Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y. et al. Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607.

[22]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[23]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[24]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[25]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[28]

Rhauderwiek, T.; Waitschat, S.; Wuttke, S.; Reinsch, H.; Bein, T.; Stock, N. Nanoscale synthesis of two Porphyrin-based MOFs with gallium and indium. Inorg. Chem. 2016, 55, 5312–5319.

[29]

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18954–18959.

[30]

Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-Oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.

[31]

Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal-organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

[32]

Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.

[33]

Wang, Z. T.; Zhou, Y. S.; Xia, C. F.; Guo, W.; You, B.; Xia, B. Y. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 19107–19112.

[34]

Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

[35]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[36]

Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

[37]

Yao, K. L.; Wang, H. B.; Yang, X. T.; Huang, Y.; Kou, C. D.; Jing, T.; Chen, S. H.; Wang, Z. Y.; Liu, Y. C.; Liang, H. Y. Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B: Environ. 2022, 311, 121377.

[38]

Gao, Z. Q.; Li, J. J.; Zhang, Z. C.; Hu, W. P. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin. Chem. Lett. 2022, 33, 2270–2280.

[39]

Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.

[40]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[41]

Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.

[42]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[43]

Zhang, X. Y.; Li, W. J.; Chen, J. C.; Wu, X. F.; Liu, Y. W.; Mao, F. X.; Yuan, H. Y.; Zhu, M. H.; Dai, S.; Wang, H. F. et al. In operando identification of in situ formed metalloid Zincδ+ active sites for highly efficient electrocatalyzed carbon dioxide reduction. Angew. Chem., Int. Ed. 2022, 61, e202202298.

[44]

Tao, Z.; Pearce, A. J.; Mayer, J. M.; Wang, H. Bridge sites of au surfaces are active for electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2022, 144, 8641–8648.

[45]

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

[46]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[47]

Guo, W. H.; Zhang, Y. F.; Su, J. J.; Song, Y.; Huang, L. B.; Cheng, L.; Cao, X. H.; Dou, Y. B.; Ma, Y. B.; Ma, C. Y. et al. Transient solid-state laser activation of indium for high-performance reduction of CO2 to formate. Small 2022, 18, 2201311.

File
12274_2023_5685_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2023
Revised: 22 February 2023
Accepted: 22 February 2023
Published: 13 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071172, 52121002, 51733004, 51725304, and 21907043), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12030300), and the Ministry of Science and Technology of China (No. 2018YFA0703200). We also acknowledge the support of the Center for Large-scale instrument management platform of Tianjin University and the Analytical and Testing Center of Tianjin University of Technology for XRD, FTIR, XPS, SEM, and TEM measurements. We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Return