Journal Home > Volume 16 , Issue 7

Understanding the effect of H2O adsorption on reactant activation is of great importance in heterogeneous catalysis, which remains a grand challenge particularly in oxide catalyst systems with structural complexity. Herein, the effect of D2O adsorption on D2 activation over MgO nanocatalysts at different temperatures has been investigated by transmission Fourier transform infrared (FT-IR) and temperature-programmed desorption (TPD). Two sets of hydride and hydroxyl species produced from D2 dissociation at more active and less active Mg-O pairs can be observed by FT-IR, which all desorb via the product of D2 as confirmed by TPD experiments. We find that the physically adsorbed D2O overlayer does not affect the dissociation of D2 since D2 may pass through the molecular layer and access the surface-active sites. When D2O is partially dissociated on the MgO surface, D2 can only dissociate at the remaining active sites until that dissociated -ODw groups from D2O occupy all active sites. These findings provide a fundamental understanding of the effect of water adsorption on D2 activation on oxide catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effects of water adsorption on active site-dependent H2 activation over MgO nanoflakes

Show Author's information Aiyi Dong1,2,§Kun Li1,2,§Rentao Mu2( )Conghui Liu2Rongtan Li2Haoran Jia2Le Lin2Qiang Fu2,3( )
School of Science, Dalian Maritime University, Dalian 116026, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

§ Aiyi Dong and Kun Li contributed equally to this work.

Abstract

Understanding the effect of H2O adsorption on reactant activation is of great importance in heterogeneous catalysis, which remains a grand challenge particularly in oxide catalyst systems with structural complexity. Herein, the effect of D2O adsorption on D2 activation over MgO nanocatalysts at different temperatures has been investigated by transmission Fourier transform infrared (FT-IR) and temperature-programmed desorption (TPD). Two sets of hydride and hydroxyl species produced from D2 dissociation at more active and less active Mg-O pairs can be observed by FT-IR, which all desorb via the product of D2 as confirmed by TPD experiments. We find that the physically adsorbed D2O overlayer does not affect the dissociation of D2 since D2 may pass through the molecular layer and access the surface-active sites. When D2O is partially dissociated on the MgO surface, D2 can only dissociate at the remaining active sites until that dissociated -ODw groups from D2O occupy all active sites. These findings provide a fundamental understanding of the effect of water adsorption on D2 activation on oxide catalysts.

Keywords: MgO, hydride, hydroxyl, H2O, H2 activation

References(48)

[1]

Larese, J. Z.; Arnold, T.; Frazier, L.; Hinde, R. J.; Ramirez-Cuesta, A. J. Direct observation of H2 binding to a metal oxide surface. Phys. Rev. Lett. 2008, 101, 165302.

[2]

Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Kim, J. Y.; Pérez, M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. J. Am. Chem. Soc. 2002, 124, 346–354.

[3]

Chen, H. Y. T.; Giordano, L.; Pacchioni, G. From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as a function of the metal support. J. Phys. Chem. C 2013, 117, 10623–10629.

[4]

Henderson, M. A.; Dahal, A.; Dohnálek, Z.; Lyubinetsky, I. Strong temperature dependence in the reactivity of H2 on RuO2(110). J. Phys. Chem. Lett. 2016, 7, 2967–2970.

[5]

Li, Z. R.; Werner, K.; Qian, K.; You, R.; Płucienik, A.; Jia, A. P.; Wu, L. H.; Zhang, L. Y.; Pan, H. B.; Kuhlenbeck, H. et al. Oxidation of reduced ceria by incorporation of hydrogen. Angew. Chem., Int. Ed. 2019, 58, 14686–14693.

[6]

Wang, Y. K.; Zhang, Q. Y.; Lin, Y. W.; Huang, W. J.; Ding, D.; Zheng, Y. P.; Chen, M. S.; Wan, H. L. Insight into the high efficiency of Cu/CeO2(110) catalysts for preferential oxidation of CO from hydrogen rich fuel. Appl. Surf. Sci. 2021, 566, 150707.

[7]

Copéret, C.; Estes, D. P.; Larmier, K.; Searles, K. Isolated surface hydrides: Formation, structure, and reactivity. Chem. Rev. 2016, 116, 8463–8505.

[8]

Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J. Phys. Chem. C 2010, 114, 8892–8898.

[9]

Wang, G. W.; Hattori, H.; Itoh, H.; Tanabe, K. The formation of adsorbed formaldehyde by the reaction of adsorbed carbon monoxide with hydrogen on magnesium oxide. J. Chem. Soc., Chem. Commun. 1982, 1256–1257.

[10]

Noto, N.; Isobe, S.; Hashimoto, N. Dehydrogenation properties of hydride-hydroxide systems containing potassium. Int. J. Energy Res. 2021, 45, 18237–18244.

[11]

Ling, Y. J.; Ran, Y. H.; Shao, W. P.; Li, N.; Jiao, F.; Pan, X. L.; Fu, Q.; Liu, Z.; Yang, F.; Bao, X. H. Probing active species for CO hydrogenation over ZnCr2O4 catalysts. Chin. J. Catal. 2022, 43, 2017–2025.

[12]

Yang, C. S.; Mu, R. T.; Wang, G. S.; Song, J. M.; Tian, H.; Zhao, Z. J.; Gong, J. L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem. Sci. 2019, 10, 3161–3167.

[13]

Gao, J.; Teplyakov, A. V. Surface species formed during thermal transformation of ethanol on ZnO powder. J. Catal. 2013, 300, 163–173.

[14]

Asthana, S.; Samanta, C.; Bhaumik, A.; Banerjee, B.; Voolapalli, R. K.; Saha, B. Direct synthesis of dimethyl ether from syngas over Cu-based catalysts: Enhanced selectivity in the presence of MgO. J. Catal. 2016, 334, 89–101.

[15]

Yang, M.; Papp, H. CO2 reforming of methane to syngas over highly active and stable Pt/MgO catalysts. Catal. Today 2006, 115, 199–204.

[16]

Pilarska, A. A.; Klapiszewski, Ł.; Jesionowski, T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol. 2017, 319, 373–407.

[17]

Jafarbegloo, M.; Tarlani, A.; Mesbah, A. W.; Muzart, J.; Sahebdelfar, S. NiO-MgO solid solution prepared by sol-gel method as precursor for Ni/MgO methane dry reforming catalyst: Effect of calcination temperature on catalytic performance. Catal. Lett. 2016, 146, 238–248.

[18]

Song, Y. D.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777–781.

[19]

Zeng, F.; Zhang, J.; Xu, R.; Zhang, R. J.; Ge, J. P. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013.

[20]

Liao, Q. L.; Liang, M. Y.; Zhang, Z.; Zhang, G. J.; Zhang, Y. Strain-modulation and service behavior of Au-MgO-ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 2015, 8, 3772–3779.

[21]

Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[22]

Ealet, B.; Goniakowski, J.; Finocchi, F. Water dissociation on a defective MgO(100) surface: Role of divacancies. Phys. Rev. B 2004, 69, 195413.

[23]

Hawkins, S.; Kumi, G.; Malyk, S.; Reisler, H.; Wittig, C. Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100). Chem. Phys. Lett. 2005, 404, 19–24.

[24]

Gribov, E. N.; Bertarione, S.; Scarano, D.; Lamberti, C.; Spoto, G.; Zecchina, A. Vibrational and thermodynamic properties of H2 adsorbed on MgO in the 300−20 K interval. J. Phys. Chem. B 2004, 108, 16174–16186.

[25]

Knözinger, E.; Jacob, K. H.; Hofmann, P. Adsorption of hydrogen on highly dispersed MgO. J. Chem. Soc., Faraday Trans. 1993, 89, 1101–1107.

[26]

Cavalleri, M.; Pelmenschikov, A.; Morosi, G.; Gamba, A.; Coluccia, S.; Martra, G. Dissociative adsorption of H2 on defect sites of MgO: A combined IR spectroscopic and quantum chemical study. Stud. Surf. Sci. Catal. 2001, 140, 131–139.

[27]

Cao, S. F.; Zhao, Y. Y.; Lee, S.; Yang, S.; Liu, J. L.; Giannakakis, G.; Li, M. W.; Ouyang, M. Y.; Wang, D. W.; Sykes, E. C. H. et al. High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Sci. Adv. 2020, 6, eaba3809.

[28]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[29]

Huang, Z. G.; Liu, Z. Y.; Zhang, X. L.; Liu, Q. Y. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Appl. Catal. B: Environ. 2006, 63, 260–265.

[30]

Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602.

[31]

Chen, B. H.; Ma, Y. S.; Ding, L. B.; Xu, L. S.; Wu, Z. F.; Yuan, Q.; Huang, W. X. Reactivity of hydroxyls and water on a CeO2(111) thin film surface: The role of oxygen vacancy. J. Phys. Chem. C 2013, 117, 5800–5810.

[32]

Yu, X.; Schwarz, P.; Nefedov, A.; Meyer, B.; Wang, Y.; Woll, C. Structural evolution of water on ZnO(1010): From isolated monomers via anisotropic H-bonded 2D and 3D structures to isotropic multilayers. Angew. Chem., Int. Ed. 2019, 58, 17751–17757.

[33]

Kenney, M. J.; Huang, J. E.; Zhu, Y.; Meng, Y. T.; Xu, M. Q.; Zhu, G. Z.; Hung, W. H.; Kuang, Y.; Lin, M. C.; Sun, X. M. et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Res. 2019, 12, 1431–1435.

[34]

Ebbesen, S. D.; Mojet, B. L.; Lefferts, L. In situ ATR-IR study of CO adsorption and oxidation over Pt/Al2O3 in gas and aqueous phase: Promotion effects by water and pH. J. Catal. 2007, 246, 66–73.

[35]

Bahmanpour, A. M.; Hoadley, A.; Tanksale, A. Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase. Green Chem. 2015, 17, 3500–3507.

[36]

Heidberg, J.; Redlich, B.; Wetter, D. Adsorption of water vapor on the MgO(100) single crystal surface. Ber. Bunsenges. Phys. Chem. 1995, 99, 1333–1337.

[37]

Mu, R. T.; Zhao, Z. J.; Dohnálek, Z.; Gong, J. L. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 1785–1806.

[38]

Dong, A. Y.; Lin, L.; Mu, R. T.; Li, R. T.; Li, K.; Wang, C.; Cao, Y. J.; Ling, Y. J.; Chen, Y. X.; Yang, F. et al. Modulating the formation and evolution of surface hydrogen species on ZnO through Cr addition. ACS Catal. 2022, 12, 6255–6264.

[39]

Liu, P. X.; Abdala, P. M.; Goubert, G.; Willinger, M. G.; Coperet, C. Ultrathin single crystalline MgO(111) nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3254–3260.

[40]

Li, H. J.; Li, M. J.; Wang, X. F.; Wu, X. G.; Liu, F. D.; Yang, B. H. Synthesis and optical properties of single-crystal MgO nanobelts. Mater. Lett. 2013, 102–103, 80–82.

[41]

Coluccia, S.; Boccuzzi, F.; Ghiotti, G.; Mirra, C. Evidence for heterolytic dissociation of H2 on the surface of thermally activated MgO powders. Z. Phys. Chem. 1980, 121, 141–143.

[42]

Noei, H.; Qiu, H. S.; Wang, Y. M.; Muhler, M.; Woll, C. Hydrogen loading of oxide powder particles: A transmission IR study for the case of zinc oxide. ChemPhysChem 2010, 11, 3604–3607.

[43]

Shi, H.; Yuan, H.; Li, Z.; Wang, W. Y.; Li, Z. Y.; Shao, X. Low-temperature heterolytic adsorption of H2 on ZnO(101̅0) surface. J. Phys. Chem. C 2019, 123, 13283–13287.

[44]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[45]

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

[46]

Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 2017, 8, 14169.

[47]

Zhao, S.; Chen, F.; Duan, S. B.; Shao, B.; Li, T. B.; Tang, H. L.; Lin, Q. Q.; Zhang, J. Y.; Li, L.; Huang, J. H. et al. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 2019, 10, 3824.

[48]

Saavedra, J.; Whittaker, T.; Chen, Z. F.; Pursell, C. J.; Rioux, R. M.; Chandler, B. D. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nat. Chem. 2016, 8, 584–589.

File
12274_2023_5684_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2023
Revised: 09 March 2023
Accepted: 22 March 2023
Published: 18 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2021YFA1502800, 2022YFA1504800 and 2022YFA1504500), and the National Natural Science Foundation of China (Nos. 91945302, 22272162, 22288201 and 21825203).

Return