AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the ratio of Bi/Bi2O3 in Bi/PNC nanosheet for high-efficiency electrosynthesis hydrogen peroxide

Zhikang Bao§Jinyan Zhao§Shijie ZhangXiaoge PengYizhen ShaoChenghang JiangZaixiang XuXing ZhongZihao YaoJianguo Wang( )
Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China

§ Zhikang Bao and Jinyan Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Turning the ratio of Bi0/Bi3+ in Bi/PNC (PNC = phosphorus, nitrogen, and carbon) nanosheet can transform electrosynthesis hydrogen peroxide selectivity and activity (H2O2 yield in flow-cell setup).

Abstract

Electrocatalytic two-electron oxygen reduction reaction (2e ORR) is a promising method for producing green and sustainable H2O2 but lacks high selectivity and yields electrocatalysts. And it is critical to develop catalysts that meet industrial demands. Herein, we report the different ratios of Bi0/Bi3+ supported on a phosphorus, nitrogen, and carbon nanosheet (Bi/PNC), which can reduce O2 to H2O2 with high selectivity (up to 97.75% at 0.4 VRHE) in 0.1 M KOH electrolyte and retain 97% selectivity even after 100 h electrolysis. Then a homemade flow-cell system was built for electrocatalytic production of H2O2 under an O2 atmosphere using an improved gas diffusion electrode. The Bi/PNC-4 can achieve a high H2O2 yield of 2.76 mol·gcatalyst−1·h−1 (alkaline), 5.29 mol·gcatalyst−1·h−1 (neutral), and 3.50 mol·gcatalyst−1·h−1 (acid) in universal pH conditions. The in-situ generated H2O2 can function as a degradation agent for efficiently degrading pesticides and antibiotics. The outstanding selectivity and activities are attributed to the synergistic effects of Bi0 and Bi3+ that promote proton-coupled reduction of O2 to OOH* (∆GOOH* = 4.27 eV), and the formation of H2O2. The fast yield of H2O2 on Bi/PNC catalysts in flow-cell provides a promising path of electrocatalytic 2e ORR for practical H2O2 production.

Electronic Supplementary Material

Download File(s)
12274_2023_5682_MOESM1_ESM.pdf (4.2 MB)

References

[1]

Pesterfield, L. The 100 most important chemical compounds: A reference guide (by Richard L. Myers). J. Chem. Educ. 2009, 86, 1182.

[2]

Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2006, 45, 206–222.

[3]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[4]

Lewis, R. J.; Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308.

[5]

Pan, Z. W. H.; Wang, K.; Wang, Y.; Tsiakaras, P.; Song, S. Q. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation. Appl. Catal. B 2018, 237, 392–400.

[6]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[7]

Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.

[8]

Bao, Z. K.; Zhou, H.; Song, X.; Gao, Y. J.; Zhuang, G. L.; Deng, S. W.; Wei, Z. Z.; Zhong, X.; Wang, J. G. Enhanced oxygen reduction activity on carbon supported Pd nanoparticles via SiO2. ChemCatChem 2019, 11, 1278–1285.

[9]

Li, J.; Zhou, H.; Zhuo, H.; Wei, Z. Z.; Zhuang, G. L.; Zhong, X.; Deng, S. W.; Li, X. N.; Wang, J. G. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 2264–2272.

[10]

Liu, C.; Yu, Z. X.; She, F. X.; Chen, J. X.; Liu, F. Z.; Qu, J. T.; Cairney, J. M.; Wu, C. C.; Liu, K. L.; Yang, W. J. et al. Heterogeneous molecular Co-N-C catalysts for efficient electrochemical H2O2 synthesis. Energy Environ. Sci. 2023, 16, 446–459.

[11]

Zhao, X.; Yin, Q.; Mao, X. N.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T. F.; Li, Y. Y.; Li, Y. G. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 2022, 13, 2721.

[12]

Wang, Y. L.; Gurses, S.; Felvey, N.; Boubnov, A.; Mao, S. S.; Kronawitter, C. X. In-situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 2019, 9, 8453–8463.

[13]

Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

[14]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[15]

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. 2015, 127, 6941–6945.

[16]

Bao, Z. K.; Zhao, J. Y.; Zhang, S. J.; Ding, L.; Peng, X. G.; Wang, G. L.; Zhao, Z. J.; Zhong, X.; Yao, Z. H.; Wang, J. G. Synergistic effect of doped nitrogen and oxygen-containing functional groups on electrochemical synthesis of hydrogen peroxide. J. Mater. Chem. A 2022, 10, 4749–4757.

[17]

Wang, Y. H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular cobalt catalysts for O2 reduction: Low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 2017, 139, 16458–16461.

[18]

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

[19]

Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In-situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289.

[20]

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

[21]

Wu, Q. L.; Yu, B.; Deng, Z. Z.; Li, T. Y.; Li, H.; Jia, B. H.; Li, P.; Sun, W. P.; Song, X. M.; Sun, Y. M. et al. Synergy of Bi2O3 and RuO2 nanocatalysts for low-overpotential and wide pH-window electrochemical ammonia synthesis. Chem.—Eur. J. 2021, 27, 17395–17401.

[22]

Sun, Y.; Deng, Z. Z.; Song, X. M.; Li, H.; Huang, Z. H.; Zhao, Q.; Feng, D. M.; Zhang, W.; Liu, Z. Q.; Ma, T. Y. Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 2020, 12, 133.

[23]

Wan, Y. C.; Zhou, H. J.; Zheng, M. Y.; Huang, Z. H.; Kang, F. Y.; Li, J.; Lv, R. T. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.

[24]

He, Y. Y.; Ma, Y. L.; Meng, J.; Zhang, X. Y.; Xia, Y. Z. Dual electrochemical catalysis of Bi2Mo3O12/Ti cathode for hydrogen peroxide production in electro-Fenton system. J. Catal. 2019, 373, 297–305.

[25]

Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C. C.; Jiang, L.; Carroll, D. L. et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928.

[26]

Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

[27]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[28]

Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.

[29]

Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 2020, 11, 2209.

[30]

Morgan, W. E.; Stec, W. J.; Van Wazer, J. R. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955.

[31]

Zhao, M. T.; Yan, X. B.; Ren, L.; Zhao, M. L.; Guo, F.; Zhuang, J. C.; Du, Y.; Hao, W. C. The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO4-based resistive switching memory. InfoMat 2020, 2, 960–967.

[32]

Kang, S.; Pawar, R. C.; Pyo, Y.; Khare, V.; Lee, C. S. Size-controlled BiOCl-RGO composites having enhanced photodegradative properties. J. Exp. Nanosci. 2016, 11, 259–275.

[33]

Dong, X. A.; Zhang, W. D.; Sun, Y. J.; Li, J. Y.; Cen, W. L.; Cui, Z. H.; Huang, H. W.; Dong, F. Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J. Catal. 2018, 357, 41–50.

[34]

Dang Tran, Q.; Le Bloa, A.; Hbib, H.; Bonnaud, O.; Meinnel, J.; Quemerais, A.; Marchand, R. Couches minces d’oxynitrure de phosphore. Application aux structures MIS sur InP. Rev. Phys. Appl. (Paris) 1989, 24, 545–551.

[35]

Jeong, Y. H.; Lee, J. H.; Bae, Y. H.; Hong, Y. T. Composition of phosphorus-nitride film deposited on InP surfaces by a photochemical vapor deposition technique and electrical properties of the interface. Appl. Phys. Lett. 1990, 57, 2680–2682.

[36]

Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381–388.

[37]

Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I. B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A 2013, 1, 3694–3699.

[38]

Guo, Q. X.; Yang, Q.; Zhu, L.; Yi, C. Q.; Xie, Y. Large-scale synthesis of amorphous phosphorus nitride imide nanotubes with high luminescent properties. J. Mater. Res. 2005, 20, 325–330.

[39]

Wu, D.; Wang, X. W.; Fu, X. Z.; Luo, J. L. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B 2021, 284, 119723.

[40]

Xiao, Y. B.; Guo, S. J.; Ouyang, Y.; Li, D. X.; Li, X.; He, W. C.; Deng, H. Y.; Gong, W.; Tan, C.; Zeng, Q. H. et al. Constructing heterogeneous structure in metal-organic framework-derived hierarchical sulfur hosts for capturing polysulfides and promoting conversion kinetics. ACS Nano 2021, 15, 18363–18373.

[41]

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

[42]

Sa, Y. J.; Kim, J. H.; Joo, S. H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2019, 58, 1100–1105.

[43]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[44]

Xia, C.; Kim, J. Y.; Wang, H. T. Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 2020, 3, 605–607.

[45]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[46]

Sellers, R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 1980, 105, 950–954.

[47]

Yamanaka, I. Direct synthesis of H2O2 by a H2/O2 fuel cell. Catal. Surv. Asia 2008, 12, 78–87.

[48]

Chen, S. Y.; Luo, T.; Chen, K. J.; Lin, Y. Y.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. J. W.; Li, X. Q. et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem., Int. Ed. 2021, 60, 16607–16614.

[49]

Cao, Y. Y.; Zhao, C. X.; Fang, Q. J.; Zhong, X.; Zhuang, G. L.; Deng, S. W.; Wei, Z. Z.; Yao, Z. H.; Wang, J. G. Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd-Cu) doped N vacancy g-C3N4: A novel design strategy for electrocatalyst screening. J. Mater. Chem. A 2020, 8, 2672–2683.

Nano Research
Pages 9050-9058
Cite this article:
Bao Z, Zhao J, Zhang S, et al. Tuning the ratio of Bi/Bi2O3 in Bi/PNC nanosheet for high-efficiency electrosynthesis hydrogen peroxide. Nano Research, 2023, 16(7): 9050-9058. https://doi.org/10.1007/s12274-023-5682-2
Topics:

911

Views

13

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Revised: 13 March 2023
Accepted: 20 March 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return