AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy

Xiu-Mei Lin1,2,§( )Chong Han2,§Xin-Tao Yang2Jia-Sheng Lin2Wei-Qiang Yang1Hong-Xu Guo1Yao-Hui Wang2Jin-Chao Dong2Jian-Feng Li2,3( )
Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, China
College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
Institute of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

§ Xiu-Mei Lin and Chong Han contributed equally to this work.

Show Author Information

Graphical Abstract

In situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of disodium terephthalate (Na2C8H4O4, Na2TP) and the one-step with the 2Li+ or 2Na+ transfer mechanism was elucidated.

Abstract

Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass, sustainability, environmental friendliness, and processability. Disodium terephthalate (Na2C8H4O4, Na2TP), an organic salt with a theoretical capacity of 255 mAh·g−1, is electroactive towards both lithium and sodium. However, its electrochemical energy storage (EES) process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate. Herein, in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP. The appearance and then disappearance of the –COOLi Raman band at 1625 cm−1 during the de/lithiation, and the increase and then decrease of the –COONa Raman band at 1615 cm−1 during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+ or 2Na+ transfer mechanism. We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries (SIBs) than lithium-ion batteries (LIBs) could be due to the larger ion radium of Na+ than Li+, which results in larger steric resistance and polarization during EES. The Na2TP, therefore, shows greater changes in spectra during de/sodiation than de/lithiation. We expect that our findings could provide a reference for the rational design of organic compounds for EES.

Electronic Supplementary Material

Download File(s)
12274_2023_5680_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y. L.; Yao, Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 2020, 120, 6490–6557.

[2]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[3]

Li, J.; Peng, Z. Q.; Wang, E. K. Tackling grand challenges of the 21st century with electroanalytical chemistry. J. Am. Chem. Soc. 2018, 140, 10629–10638.

[4]

Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.

[5]

Li, Y.; Zhou, H. M.; Lin, N.; Qian, Y. T. Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes. J. Mater. Chem. A 2022, 10, 23770–23779.

[6]

Li, Y.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y. T. Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode. Sci. Bull. 2022, 67, 636–645.

[7]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[8]

Wan, J.; Zuo, Z. C.; Shen, Z. Z.; Chen, W. P.; Liu, G. X.; Hu, X. C.; Song, Y. X.; Xin, S.; Guo, Y. G.; Wen, R. et al. Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries. J. Am. Chem. Soc. 2022, 144, 9354–9362.

[9]

Lin, M. H.; Cheng, J. H.; Huang, H. F.; Chen, U. F.; Huang, C. M.; Hsieh, H. W.; Lee, J. M.; Chen, J. M.; Su, W. N.; Hwang, B. J. Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li1.2Ni0.2Mn0.6O2 cathode using restricted charging protocols. J. Power Sources 2017, 359, 539–548.

[10]

Que, L. F.; Yu, F. D.; Xia, Y.; Deng, L.; Goh, K.; Liu, C.; Jiang, Y. S.; Sui, X. L.; Wang, Z. B. Enhancing Na-ion storage at subzero temperature via interlayer confinement of Sn2+. ACS Nano 2020, 14, 13765–13774.

[11]

Ma, Y. J.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q. S.; Goonetilleke, D.; Tang, Y. S.; Zhou, B.; Hahn, H.; Wenzel, W. et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2202372.

[12]

Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

[13]

Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

[14]

Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

[15]

Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 11601792.

[16]

Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.

[17]

Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

[18]

Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y. J.; Niklas, J.; Poluektov, O.; Amine, K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 2012, 5, 9632–9638.

[19]

Gao, P.; Chen, Z.; Zhao-Karger, Z.; Mueller, J. E.; Jung, C.; Klyatskaya, S.; Diemant, T.; Fuhr, O.; Jacob, T.; Behm, R. J. et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem., Int. Ed. 2017, 56, 10341–10346.

[20]

Deng, Q. J.; Wang, Y.; Zhao, Y.; Li, J. Z. Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries. Ionics 2017, 23, 2613–2619.

[21]

Zhao, L.; Zhao, J. M.; Hu, Y. S.; Li, H.; Zhou, Z. B.; Armand, M.; Chen, L. Q. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2012, 2, 962–965.

[22]

Wang, Y.; Kretschmer, K.; Zhang, J. Q.; Mondal, A. K.; Guo, X.; Wang, G. X. Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Adv. 2016, 6, 57098–57102.

[23]

Wan, F.; Wu, X. L.; Guo, J. Z.; Li, J. Y.; Zhang, J. P.; Niu, L.; Wang, R. S. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy 2015, 13, 450–457.

[24]

Zhang, S. W.; Cao, T. F.; Lv, W.; Zhang, J.; Tao, Y.; Kang, F. Y.; Wang, D. W.; Yang, Q. H. High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy 2020, 77, 105203.

[25]

Sk, M. A.; Manzhos, S. Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations. J. Power Sources 2016, 324, 572–581.

[26]

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[27]

Amalraj, S. F.; Aurbach, D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J. Solid State Electrochem. 2011, 15, 877–890.

[28]

Yao, H. R.; Wang, P. F.; Gong, Y.; Zhang, J. N.; Yu, X. Q.; Gu, L.; Ouyang, C. Y.; Yin, Y. X.; Hu, E. Y.; Yang, X. Q. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 8440–8443.

[29]

Lin, X. M.; Yang, X. T.; Chen, H. N.; Deng, Y. L.; Chen, W. H.; Dong, J. C.; Wei, Y. M.; Li, J. F. In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy Chem. 2023, 76, 146–164.

[30]

Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 2016, 16, 3329–3334.

[31]

Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

[32]

Wu, X. Y.; Jin, S. F.; Zhang, Z. Z, ; Jiang, L. W.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

[33]

Song, Z. P.; Zhan, H.; Zhou, Y. H. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 2009, 448–450.

[34]

Bitenc, J.; Pirnat, K.; Bančič, T.; Gaberšček, M.; Genorio, B.; Randon-Vitanova, A.; Dominko, R. Anthraquinone-based polymer as cathode in rechargeable magnesium batteries. ChemSusChem 2015, 8, 4128–4132.

[35]

Vizintin, A.; Bitenc, J.; Lautar, A. K.; Pirnat, K.; Grdadolnik, J.; Stare, J.; Randon-Vitanova, A.; Dominko, R. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Commun. 2018, 9, 661.

[36]

Lu, Y.; Hou, X. S.; Miao, L. C.; Li, L.; Shi, R. J.; Liu, L. J.; Chen, J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7020–7024.

[37]

Ma, T.; Liu, L. J.; Wang, J. Q.; Lu, Y.; Chen, J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 11533–11539.

[38]

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

[39]

Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332.

[40]

Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

[41]

Cai, C. C.; Chen, Y. A.; Hu, P.; Zhu, T.; Li, X. Y.; Yu, Q.; Zhou, L.; Yang, X. Y.; Mai, L. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage. Small 2022, 18, 2105303.

[42]

Cohn, A. P.; Share, K.; Carter, R.; Oakes, L.; Pint, C. L. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett. 2016, 16, 543–548.

[43]

Lin, X. M.; Diemant, T.; Mu, X. K.; Gao, P.; Behm, R. J.; Fichtner, M. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries. Carbon 2018, 127, 47–56.

[44]

Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

[45]

Vinayan, B. P.; Diemant, T.; Lin, X. M.; Cambaz, M. A.; Golla-Schindler, U.; Kaiser, U.; Jürgen Behm, R.; Fichtner, M. Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.

[46]

Zhai, D. Y.; Wang, H. H.; Lau, K. C.; Gao, J.; Redfern, P. C.; Kang, F. Y.; Li, B. H.; Indacochea, E.; Das, U.; Sun, H. H. et al. Raman evidence for late stage disproportionation in a Li-O2 battery. J. Phys. Chem. Lett. 2014, 5, 2705–2710.

[47]

Zhao, Z. W.; Zhang, X.; Zhou, Z.; Wang, E. K.; Peng, Z. Q. Direct in situ spectroscopic evidence for solution-mediated oxygen reduction reaction intermediates in aprotic lithium-oxygen batteries. Nano Lett. 2022, 22, 501–507.

[48]

Lin, X. M.; Wu, D. Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Monitoring the electrochemical energy storage processes of an organic full rechargeable battery via operando Raman spectroscopy: A mechanistic study. Chem. Mater. 2019, 31, 3239–3247.

[49]

Varghese, H. T.; Panicker, C. Y.; Philip, D.; Sreevalsan, K.; Anithakumary, V. IR, Raman and SERS spectra of disodium terephthalate. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2007, 68, 817–822.

[50]
Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; John Wiley & Sons Ltd: Chichester, 2019.
Nano Research
Pages 245-252
Cite this article:
Lin X-M, Han C, Yang X-T, et al. In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy. Nano Research, 2024, 17(1): 245-252. https://doi.org/10.1007/s12274-023-5680-4
Topics:

1059

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 January 2023
Revised: 20 March 2023
Accepted: 21 March 2023
Published: 10 May 2023
© Tsinghua University Press 2023
Return