Journal Home > Volume 16 , Issue 7

In recent years, numerous studies have been reported for oil/water separation, such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation. However, for the recovery of oil slick pollution on near-shore ocean surface caused by various reasons, large area and fast availability of used materials are needed to be considered. Herein, we report an efficient and environmentally friendly method to fast process nylon mesh by surface diffuse atmospheric plasma (SDAP) for large-area oil/water separation. Nylon mesh is funcionalized by atmospheric plasma to generate micro/nano composite structures on the surface, resulting in superhydrophilicity and underwater superoleophobicity within only seconds. The pre-wetted modified nylon mesh can achieve high efficiency (> 99.9%) and circulating water flux (~ 30,000 L·m−2·h−1), with high intrusion pressure (~ 3 kPa) and universality in oil/water separation. Regular plasma unconditionally generated in the atmosphere with the merit of efficiently functionalizing surface has the potential of large-area materials treatment. This study might take one step further for large-area industrial oily wastewater recovery and even oil slicks collection in near-shore water bodies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast processing nylon mesh by surface diffuse atmospheric plasma for large-area oil/water separation

Show Author's information Linfeng Yang1,2,§Yaping Feng3,§Zengyi He1,2Xinyan Jiang1,2Xianfeng Luo1,2Haoyu Dai1( )Lei Jiang1,2,3
CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China

§ Linfeng Yang and Yaping Feng contributed equally to this work.

Abstract

In recent years, numerous studies have been reported for oil/water separation, such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation. However, for the recovery of oil slick pollution on near-shore ocean surface caused by various reasons, large area and fast availability of used materials are needed to be considered. Herein, we report an efficient and environmentally friendly method to fast process nylon mesh by surface diffuse atmospheric plasma (SDAP) for large-area oil/water separation. Nylon mesh is funcionalized by atmospheric plasma to generate micro/nano composite structures on the surface, resulting in superhydrophilicity and underwater superoleophobicity within only seconds. The pre-wetted modified nylon mesh can achieve high efficiency (> 99.9%) and circulating water flux (~ 30,000 L·m−2·h−1), with high intrusion pressure (~ 3 kPa) and universality in oil/water separation. Regular plasma unconditionally generated in the atmosphere with the merit of efficiently functionalizing surface has the potential of large-area materials treatment. This study might take one step further for large-area industrial oily wastewater recovery and even oil slicks collection in near-shore water bodies.

Keywords: surface modification, oil/water separation, superwettability, atmospheric plasma

References(46)

[1]

Dong, Y. Z.; Liu, Y. X.; Hu, C. M.; MacDonald, I. R.; Lu, Y. C. Chronic oiling in global oceans. Science 2022, 376, 1300–1304.

[2]

Leifer, I. Oil at sea—How much is too much. Science 2022, 376, 1266–1267.

[3]

Kujawinski, E. B.; Reddy, C. M.; Rodgers, R. P.; Thrash, J. C.; Valentine, D. L.; White, H. K. The first decade of scientific insights from the Deepwater Horizon oil release. Nat. Rev. Earth Environ. 2020, 1, 237–250.

[4]

Beyer, J.; Trannum, H. C.; Bakke, T.; Hodson, P. V.; Collier, T. K. Environmental effects of the Deepwater Horizon oil spill: A review. Mar. Pollut. Bull. 2016, 110, 28–51.

[5]

Stout, S. A.; Payne, J. R. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2016, 108, 186–202.

[6]

Song, J. L.; Lu, Y.; Luo, J.; Huang, S.; Wang, L.; Xu, W. J.; Parkin, I. P. Barrel-shaped oil skimmer designed for collection of oil from spills. Adv. Mater. Interfaces 2015, 2, 1500350.

[7]

Mapelli, F.; Scoma, A.; Michoud, G.; Aulenta, F.; Boon, N.; Borin, S.; Kalogerakis, N.; Daffonchio, D. Biotechnologies for marine oil spill cleanup: Indissoluble ties with microorganisms. Trends Biotechnol. 2017, 35, 860–870.

[8]

Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.

[9]

Ma, Q. L.; Wu, Z. Y.; Neacșu, V. A.; Zhao, S.; Chai, Y.; Zhang, H. Recycling plastic waste into multifunctional superhydrophobic textiles. Nano Res. 2022, 15, 9921–9925.

[10]

Kong, Z.; Wang, J. R.; Lu, X. Y.; Zhu, Y.; Jiang, L. In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills. Nano Res. 2017, 10, 1756–1766.

[11]

Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van Der Bruggen, B. Superhydrophilic and underwater superoleophobic membranes—A review of synthesis methods. Prog. Polym. Sci. 2019, 98, 101166.

[12]
Wu, J. F.; Su, Y. X.; Cui, Z. W.; Yu, Y.; Qu, J. F.; Hu, J. D.; Cai, Y. H.; Li, J. Z.; Tian, D.; Zhang, Q. C. Flexible, durable, and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation. Nano Res., in press, https://doi.org/10.1007/s12274-022-5149-x.
DOI
[13]

Zhang, S. X.; Jiang, G. S.; Gao, S. J.; Jin, H. L.; Zhu, Y. Z.; Zhang, F.; Jin, J. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano 2018, 12, 795–803.

[14]

Raj, A.; Rego, R. M.; Ajeya, K. V.; Jung, H. Y.; Altalhi, T.; Neelgund, G. M.; Kigga, M.; Kurkuri, M. D. Underwater oleophobic-super hydrophilic strontium-MOF for efficient oil/water separation. Chem. Eng. J. 2023, 453, 139757.

[15]

Liu, M. J.; Wang, S. T.; Wei, Z. X.; Song, Y. L.; Jiang, L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 2009, 21, 665–669.

[16]

Li, X. Y.; Gui, Q. L.; Wei, Y.; Feng, L. Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. J. Mater. Chem. A. 2021, 9, 26127–26134.

[17]

Hetemi, D.; Pinson, J. Surface functionalisation of polymers. Chem. Soc. Rev. 2017, 46, 5701–5713.

[18]

Li, D. Y.; Xu, K.; Zhang, Y. J. A review on research progress in plasma-controlled superwetting surface structure and properties. Polymers 2022, 14, 3759.

[19]

Peran, J.; Ražić, S. E. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2019, 90, 1174–1197.

[20]

Wang, R. X.; Shen, Y.; Zhang, C.; Yan, P.; Shao, T. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface. Appl. Surf. Sci. 2016, 367, 401–406.

[21]

Chen, F. Z.; Song, J. L.; Liu, Z. A.; Liu, J. Y.; Zheng, H. X.; Huang, S.; Sun, J.; Xu, W. J.; Liu, X. Atmospheric pressure plasma functionalized polymer mesh: An environmentally friendly and efficient tool for oil/water separation. ACS Sustainable Chem. Eng. 2016, 4, 6828–6837.

[22]

Ren, Y.; Xu, L.; Wang, C. X.; Wang, X. N.; Ding, Z. R.; Chen, Y. Y. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics. Appl. Surf. Sci. 2017, 426, 612–621.

[23]

Šimor, M.; Ráhel', J.; Vojtek, P.; Černák, M.; Brablec, A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl. Phys. Lett. 2002, 81, 2716–2718.

[24]

Černák, M.; Černáková, L.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009, 47, 22806.

[25]

Černák, M.; Kováčik, D.; Ráhel', J.; St'ahel, P.; Zahoranová, A.; Kubincová, J.; Tóth, A.; Černáková, L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion 2011, 53, 124031.

[26]

Hansen, L.; Reck, K.; Kersten, H. Energy flux measurements on an atmospheric pressure surface barrier discharge. J. Phys. D:Appl. Phys. 2019, 52, 325201.

[27]

Klébert, S.; Tilajka, S.; Románszki, L.; Mohai, M.; Csiszár, E.; Károly, Z. Degradation phenomena on atmospheric air plasma treatment of polyester fabrics. Surf. Interfaces 2021, 22, 100826.

[28]

Štěpánová, V.; Slavíček, P.; Stupavská, M.; Jurmanová, J.; Černák, M. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process. Appl. Surf. Sci. 2015, 355, 1037–1043.

[29]

Stepanova, V.; Kelar, J.; Galmiz, O.; Zemanek, M.; Slavicek, P.; Bucek, A.; Cernak, M. Areal homogeneity verification of plasma generated by diffuse coplanar surface barrier discharge in ambient air at atmospheric pressure. Contrib. Plasma Phys. 2017, 57, 182–189.

[30]

Jiang, L.; Tang, Z. G.; Park-Lee, K. J.; Hess, D. W.; Breedveld, V. Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation. Sep. Purif. Technol. 2017, 184, 394–403.

[31]

Bai, Z. X.; Jia, K.; Liu, C. C.; Wang, L. L.; Lin, G.; Huang, Y. M.; Liu, S. N.; Liu, X. B. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv. Funct. Mater. 2021, 31, 2104701.

[32]

Li, L.; Peng, M. Y.; Teng, Y.; Gao, G. Z. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air. Appl. Surf. Sci. 2016, 362, 348–354.

[33]

Rasouli, S.; Rezaei, N.; Hamedi, H.; Zendehboudi, S.; Duan, X. L. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Mater. Design 2021, 204, 109599.

[34]

Chen, F. Z.; Wang, Y. Q.; Tian, Y. L.; Zhang, D. W.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P.; Lu, Y. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 2022, 51, 8476–8583.

[35]

Tian, Y.; Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292.

[36]

Tian, X. L.; Jokinen, V.; Li, J.; Sainio, J.; Ras, R. H. A. Unusual dual superlyophobic surfaces in oil–water systems: The design principles. Adv. Mater. 2016, 28, 10652–10658.

[37]

Li, J.; Yan, L.; Li, H. Y.; Li, W. J.; Zha, F.; Lei, Z. Q. Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation. J. Mater. Chem. A 2015, 3, 14696–14702.

[38]

Li, J.; Li, D. M.; Yang, Y. X.; Li, J. P.; Zha, F.; Lei, Z. Q. A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 2016, 18, 541–549.

[39]

Li, J.; Li, D. M.; Li, W. J.; Li, H. Y.; She, H. D.; Zha, F. Facile fabrication of underwater superoleophobic SiO2 coated meshes for separation of polluted oils from corrosive and hot water. Sep. Purif. Technol. 2016, 168, 209–214.

[40]

Wang, L. J.; Zhang, J. Y.; Wang, S.; Yu, J. G.; Hu, W. J. H.; Jiao, F. P. Preparation of a polystyrene-based super-hydrophilic mesh and evaluation of its oil/water separation performance. J. Membr. Sci. 2020, 597, 117747.

[41]

Yuan, S. S.; Strobbe, D.; Kruth, J. P.; Van Puyvelde, P.; Van Der Bruggen, B. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation. J. Mater. Chem. A 2017, 5, 25401–25409.

[42]

Li, R. J.; Rao, L. H.; Zhang, J. Z.; Shen, L. G.; Xu, Y. C.; You, X. J.; Liao, B. Q.; Lin, H. J. Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J. Membr. Sci. 2021, 635, 119502.

[43]

Raza, A.; Ding, B.; Zainab, G.; El-Newehy, M.; Al-Deyab, S. S.; Yu, J. Y. In situ cross-linked superwetting nanofibrous membranes for ultrafast oil–water separation. J. Mater. Chem. A 2014, 2, 10137–10145.

[44]

Thompson, R.; Austin, D.; Wang, C.; Neville, A.; Lin, L. Low-frequency plasma activation of nylon 6. Appl. Surf. Sci. 2021, 544, 148929.

[45]

Pan, Z. H.; Cao, S. J.; Li, J. F.; Du, Z. P.; Cheng, F. Q. Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size. J. Memb. Sci. 2019, 572, 596–606.

[46]

Zhao, P.; Qin, N.; Ren, C. L.; Wen, J. Z. Polyamide 6.6 separates oil/water due to its dual underwater oleophobicity/underoil hydrophobicity: Role of 2D and 3D porous structures. Appl. Surf. Sci. 2019, 466, 282–288.

Video
12274_2023_5677_MOESM3_ESM.mp4
12274_2023_5677_MOESM2_ESM.mp4
File
12274_2023_5677_MOESM1_ESM.pdf (576.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 February 2023
Revised: 14 March 2023
Accepted: 19 March 2023
Published: 18 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially funded by the National Natural Science Foundation of China (Nos. 22205247 and 21988102).

Return